[1] 陈瑶,韩昌洪,鲜于丽. 肺炎克雷伯菌临床感染分布及耐药性分析[J]. 实用药物与临床, 2010, 13(3): 229-230. DOI:10.3969/j.issn.1673-0070.2010.03.029.
[2] 马梦亭. 血流感染中肺炎克雷伯菌的耐药基因检测及同源性分析[D]. 蚌埠:蚌埠医学院,2020.
[3] Kazemian H, Heidari H, Ghanavati R, et al. Phenotypic and genotypic characterization of ESBL-, AmpC-, and Carbapenemase-producing Klebsiella pneumoniae and Escherichia coli isolates [J]. Med Princ Pract,2019,28(6):547-551. DOI:10.1159/000500311.
[4] Bedenić B, Vranes J, Bosnjak Z, et al. Emergence of CTX-M group 1 extended-spectrum ß-lactamase–producing Klebsiella pneumoniae strains in the community [J]. Medicinski glasnik, 2010,7(1): 32-39.
[5] 李姗,黄方园,张玉龙,等. 四川省部分地区肉牛源产超广谱β-内酰胺酶肺炎克雷伯菌的分离鉴定与耐药性分析[J]. 浙江农业学报,2022,34(5):923-933. DOI: 10.3969/j.issn.1004-1524.2022.05.06.
[6] Kawamura K, Nagano N, Suzuki M, et al. ESBL-producing Escherichia coli and its rapid rise among healthy people [J]. Food Saf (Tokyo), 2017,5(4):122-150. DOI: 10.14252/foodsafetyfscj.2017011.
[7] 邓明惠,候轩,张微,等. 产ESBLs肺炎克雷伯菌药敏性和耐药基因表型分析[J]. 国际检验医学杂志,2020,41(16):1994-1998. DOI:10.3969/j.issn.1673-4130.2020.16.018.
[8] 陶勇,姚杰,贾建安,等. 临床产ESBLs大肠埃希菌和肺炎克雷伯菌的耐药性分析及耐药基因和I类整合子的检测[J]. 临床肺科杂志,2010,15(6):886-888. DOI:10.3969/j.issn.1009-6663.2010.06.079.
[9] 刘妍,张萍淑,吴宗武,等. NICU肺炎克雷伯菌携带耐药基因特征与临床耐药性分析[J]. 中国实验诊断学,2021,25(4):475-479. DOI:10.3969/j.issn.1007-4287.2021.04.001.
[10] Sun W, Wang D, Yan S, et al. Characterization of Escherichia coli strains isolated from geese by detection of integron-mediated antimicrobial resistance [J]. J Glob Antimicrob Resist, 2022, 31(08): 10-14. DOI: 10.1016/j.jgar.2022.08.013.
[11] 葛萃萃,周霓,程本坤,等. 广东地区医院分离肺炎克雷伯菌整合子及其携带耐药基因的研究[J]. 中国消毒学杂志,2014(8):816-819.
[12] Firoozeh F, Mahluji Z, Khorshidi A, et al. Molecular characterization of class 1, 2 and 3 integrons in clinical multi-drug resistant Klebsiella pneumoniae isolates [J]. Antimicrob Resist Infect Control, 2019, 8: 59. DOI:10.1186/s13756-019-0509-3.
[13] Kaushik M, Kumar S, Kapoor RK, et al. Integrons in Enterobacteriaceae: diversity, distribution and epidemiology [J]. International Journal of Antimicrobial Agents,2018,51(2):167-176. DOI:10.1016/j.ijantimicag. 2017.10.004.
[14] 郝家砚,程邦宁. 产ESBLs肺炎克雷伯菌的整合子介导耐药的研究[J]. 国外医药(抗生素分册),2014,35(1):16-18,22. DOI:10.3969/j.issn.1001-8751.2014.01.004.
[15] Li B, Hu Y, Wang Q, et al. Structural diversity of class 1 integrons and their associated gene cassettes in Klebsiella pneumoniae isolates from a hospital in China [J]. PLoS One,2013,8(9):e75805. Published 2013 Sep 30. DOI:10.1371/journal.pone.0075805.
[16] Kumar S, Anwer R, Azzi A. Molecular typing methods & resistance mechanisms of MDR Klebsiella pneumoniae [J]. AIMS Microbiol,2023,9(1):112-130. DOI:10.3934/microbiol.2023008.
[17] Elahi E, Pourmand N, Chaung R, et al. Determination of hepatitis C virus genotype by pyrosequencing [J]. J Virol Methods,2003,109(2):171-176. DOI:10.1016/s0166-0934(03)00068-5.
[18] Xu T, Wu X, Cao H, et al. The characteristics of multilocus sequence typing, virulence genes and drug resistance of Klebsiella pneumoniae isolated from cattle in Northern Jiangsu, China [J]. Animals (Basel),2022,12(19):2627. DOI:10.3390/ani12192627.
[19] Mobasseri G, Thong KL, Rajasekaram G, et al. Molecular characterization of extended-spectrum β-lactamase- producing Klebsiella pneumoniae from a Malaysian hospital [J]. Braz J Microbiol, 2020, 51(1): 189-195. DOI:10.1007/s42770-019-00208-w.
[20] 吕承秀.产ESBLs的高毒力肺炎克雷伯菌分子流行特征及进化途径研究[D]. 淮南: 安徽理工大学,2021.
[21] 张嘉文,吴森泉,周晓玲,等.探索MALDI-TOF MS在肺炎克雷伯菌同源性分析中的应用[J].医学理论与实践,2023,36(2):302-305. DOI:10.19381/j.issn.1001-7585. 2023.02.047.
[22] 张杰,张金鑫,楚新旭,等. MALDI-TOFMS在耐碳青霉烯类肺炎克雷伯菌同源性分析的应用研究[J]. 中国抗生素杂志,2022,47(4):381-387. DOI:10.3969/j.issn.1001-8689. 2022.04.010.
[23] 庄志辉,周仕丹,刘志超,等. 2013~2017某医院耐碳青霉烯类肺炎克雷伯菌耐药基因检测及分析[J]. 中国处方药,2021,19(1):63-64. DOI:10.3969/j.issn.1671- 945X. 2021.01.032.
[24] Neoh HM, Tan XE, Sapri HF, et al. Pulsed-field gel electrophoresis (PFGE): a review of the "gold standard" for bacteria typing and current alternatives [J]. Infect Genet Evol,2019,74:103935. DOI:10.1016/j.meegid.2019.103935.
[25] 师志云,马苗,尹晓丽,等. 碳青霉烯类耐药肺炎克雷伯菌的耐药性及毒力特征的分子生物学研究[J]. 中国感染与化疗杂志,2022,22(6):725-731. DOI:10.16718/j.1009-7708. 2022.06.012.
[26] Esmaeilnia M, Saffari M, Rashki S, et al. Molecular typing of clinical and environmental isolates of Klebsiella pneumoniae producing ESBLs by PFGE [J]. Iran J Basic Med Sci, 2022,25(2):208-213. DOI: 10.22038/IJBMS.2022.58445.12981.
[27] Jang KS, Kim YH. Rapid and robust MALDI-TOF MS techniques for microbial identification: a brief overview of their diverse applications [J]. J Microbiol, 2018, 56(4): 209-216. DOI: 10.1007/s12275-018-7457-0.
[28] Nakamura S, Sato H, Tanaka R, et al. Ribosomal subunit protein typing using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification and discrimination of Aspergillus species [J]. BMC Microbiol, 2017, 17(1): 100. DOI:10.1186/s12866-017-1009-3.
[29] Dingle TC, Butler-Wu SM. MALDI-TOF Mass Spectrometry for microorganism identification [J]. Clin Lab Med, 2013, 33(3):589-609. DOI:10.1016/j.cll.2013.03.001.
[30] Pena I, Pena-Vina E, Rodriguez-Avial I, et al. Comparison of performance of MALDI-TOF MS and MLST for biotyping carbapenemase-producing Klebsiella pneumoniae sequence types ST11 and ST101 isolates [J]. Enferm Infecc Microbiol Clin (Engl Ed), 2022, 40(4): 172-178. DOI:10.1016/j.eimce.2020.10.011.
[31] 罗燕萍,张秀菊,张军民,等. 产ESBL肺炎克雷伯菌和大肠埃希菌的分布及耐药分析[J]. 药物与临床,2003,18(5):26-29. DOI:10.3969/j.issn.1672-8157.2003.05.006.
|