国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (8): 1316-1320.DOI: 10.3760/cma.j.issn.1007-1245.2024.08.018
m6A及m5C甲基化修饰通过促进细胞增殖与转移影响癌症的发生和发展
邵爽 郭纪伟 孟玮
滨州医学院附属医院医学研究中心,滨州 256600
收稿日期:
2023-10-07
出版日期:
2024-04-15
发布日期:
2024-05-05
通讯作者:
孟玮,Email:bymengwei2008@126.com
基金资助:
山东省高等学校“青创科技计划”(2020KJK002);“齐鲁卫生与健康杰出青年人才”项目
m6A and m5C methylation modification affects the initiation and development of cancers by regulating cellular proliferation and metastasis
Shao Shuang, Guo Jiwei, Meng Wei
Medical Research Center, Binzhou Medical University Hospital, Binzhou 256600, China
Received:
2023-10-07
Online:
2024-04-15
Published:
2024-05-05
Contact:
Meng Wei, Email: bymengwei2008@126.com
Supported by:
"Youth Innovation Science and Technology Plan" of Colleges and Universities in Shandong Province (2020KJK002); "Qilu Outstanding Young Talents in Health"
摘要:
在RNA中已经发现了170多种化学修饰,RNA甲基化修饰是一个重要的转录后修饰过程,N6-甲基腺苷(m6A)和5-甲基胞嘧啶(m5C)普遍存在于真核生物和原核生物中,使得RNA甲基化在调控基因表达进而影响细胞生物活性的研究越来越受到重视。与细胞增殖和转移有关的信号通路调控肿瘤免疫、代谢等细胞活动,并在调节器官大小、组织再生和干细胞自我更新中起着关键作用,影响癌症的发生和发展。在本综述中,我们讨论m6A及m5C甲基化修饰通过一些热门通路调控癌症的发生和发展,这为我们从RNA甲基化的角度理解疾病和寻找新的治疗方法提供了新的理论基础。
邵爽 郭纪伟 孟玮.
m6A及m5C甲基化修饰通过促进细胞增殖与转移影响癌症的发生和发展 [J]. 国际医药卫生导报, 2024, 30(8): 1316-1320.
Shao Shuang, Guo Jiwei, Meng Wei.
m6A and m5C methylation modification affects the initiation and development of cancers by regulating cellular proliferation and metastasis [J]. International Medicine and Health Guidance News, 2024, 30(8): 1316-1320.
[1] Dai X, Ren T, Zhang Y, et al. Methylation multiplicity and its clinical values in cancer[J]. Expert Rev Mol Med, 2021, 23:e2. DOI: 10.1017/erm.2021.4. [2] Uddin MB, Wang Z, Yang C. Dysregulations of functional RNA modifications in cancer, cancer stemness and cancer therapeutics[J]. Theranostics, 2020, 10(7):3164-3189. DOI: 10.7150/thno.41687. [3] Oerum S, Meynier V, Catala M, et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures[J]. Nucleic Acids Res, 2021, 49(13):7239-7255. DOI: 10.1093/nar/gkab378. [4] Shao D, Li Y, Wu J, et al. An m6A/m5C/m1A/m7G-related long non-coding RNA signature to predict prognosis and immune features of glioma[J]. Front Genet, 2022, 13:903117. DOI: 10.3389/fgene.2022.903117. [5] Yang B, Wang JQ, Tan Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174:105937. DOI: 10.1016/j.phrs.2021.105937. [6] Du B, Zhang Y, Liang M, et al. N6-methyladenosine (m6A) modification and its clinical relevance in cognitive dysfunctions[J]. Aging (Albany NY), 2021, 13(16):20716-20737. DOI: 10.18632/aging.203457. [7] Liu ZX, Li LM, Sun HL, et al. Link between m6A modification and cancers[J]. Front Bioeng Biotechnol, 2018, 6:89. DOI: 10.3389/fbioe.2018.00089. [8] Zhang T, Zhang SW, Zhang SY, et al. m6A-express: uncovering complex and condition-specific m6A regulation of gene expression[J]. Nucleic Acids Res, 2021, 49(20):e116. DOI: 10.1093/nar/gkab714. [9] Zeng C, Huang W, Li Y, et al. Roles of METTL3 in cancer: mechanisms and therapeutic targeting[J]. J Hematol Oncol, 2020, 13(1):117. DOI: 10.1186/s13045-020- 00951-w. [10] Wei J, Liu F, Lu Z, et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm[J]. Mol Cell, 2018, 71(6):973-985.e5. DOI: 10.1016/j.molcel.2018.08.011. [11] Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12):885-887. DOI: 10.1038/nchembio.687. [12] Azzam SK, Alsafar H, Sajini AA. FTO m6A demethylase in obesity and cancer: implications and underlying molecular mechanisms[J]. Int J Mol Sci, 2022, 23(7):3800. DOI: 10.3390/ijms23073800. [13] Qu J, Yan H, Hou Y, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol, 2022, 15(1):8. DOI: 10.1186/s13045- 022-01224-4. [14] Chen YG, Chen R, Ahmad S, et al. N6-methyladenosine modification controls circular RNA immunity[J]. Mol Cell, 2019, 76(1):96-109.e9. DOI: 10.1016/j.molcel.2019. 07.016. [15] Zaccara S, Jaffrey SR. A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA[J]. Cell, 2020, 181(7):1582-1595.e18. DOI: 10.1016/j.cell.2020.05.012. [16] Xu Y, Zhang M, Zhang Q, et al. Role of main RNA methylation in hepatocellular carcinoma: N6-methyladenosine, 5-methylcytosine, and N1-methyladenosine[J]. Front Cell Dev Biol, 2021, 9:767668. DOI: 10.3389/fcell.2021.767668. [17] Yu G, Bao J, Zhan M, et al. Comprehensive analysis of m5C methylation regulatory genes and tumor microenvironment in prostate cancer[J]. Front Immunol, 2022, 13:914577. DOI: 10.3389/fimmu.2022.914577. [18] Hu Y, Chen C, Tong X, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation[J]. Cell Death Dis, 2021, 12(9):842. DOI: 10.1038/s41419-021-04127-3. [19] Chen YS, Yang WL, Zhao YL, et al. Dynamic transcriptomic m5 C and its regulatory role in RNA processing[J]. Wiley Interdiscip Rev RNA, 2021, 12(4):e1639. DOI: 10.1002/wrna.1639. [20] 张婷,王紫凌,郑永唐. RNA m5C修饰调控病毒复制的研究进展[J]. 科学通报,2022,67(31):3654-3666. DOI:10.1360/TB-2022-0461. [21] Yu FX, Guan KL. The Hippo pathway: regulators and regulations[J]. Genes Dev, 2013, 27(4):355-371. DOI: 10.1101/gad.210773.112. [22] Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond[J]. Physiol Rev, 2014, 94(4):1287-1312. DOI: 10.1152/physrev.00005.2014. [23] Han Y. Analysis of the role of the Hippo pathway in cancer[J]. J Transl Med, 2019, 17(1):116. DOI: 10.1186/s12967- 019-1869-4. [24] Chamcheu JC, Roy T, Uddin MB, et al. Role and therapeutic targeting of the PI3K/Akt/mTOR signaling pathway in skin cancer: a review of current status and future trends on natural and synthetic agents therapy[J]. Cells, 2019, 8(8):803. DOI: 10.3390/cells8080803. [25] Wang J, Hu K, Cai X, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B, 2022, 12(1):18-32. DOI: 10.1016/j.apsb.2021.07.023. [26] Shariati M, Meric-Bernstam F. Targeting AKT for cancer therapy[J]. Expert Opin Investig Drugs, 2019, 28(11):977-988. DOI: 10.1080/13543784.2019.1676726. [27] Nitulescu GM, Van De Venter M, Nitulescu G, et al. The Akt pathway in oncology therapy and beyond (Review)[J]. Int J Oncol, 2018, 53(6):2319-2331. DOI: 10.3892/ijo.2018. 4597. [28] Clevers H, Nusse R. Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149(6):1192-1205. DOI: 10.1016/j.cell. 2012.05.012. [29] Ji L, Lu B, Zamponi R, et al. USP7 inhibits Wnt/β-catenin signaling through promoting stabilization of Axin[J]. Nat Commun, 2019, 10(1):4184. DOI: 10.1038/s41467-019- 12143-3. [30] Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin[J]. EMBO J, 2012, 31(12):2714-2736. DOI: 10.1038/emboj.2012.150. [31] Pai SG, Carneiro BA, Mota JM, et al. Wnt/beta-catenin pathway: modulating anticancer immune response[J]. J Hematol Oncol, 2017, 10(1):101. DOI: 10.1186/s13045- 017-0471-6. [32] Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020, 19(3):1997-2007. DOI: 10.3892/etm.2020.8454. [33] Plotnikov A, Zehorai E, Procaccia S, et al. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation[J]. Biochim Biophys Acta, 2011, 1813(9):1619-1633. DOI: 10.1016/j.bbamcr. 2010.12.012. [34] Lake D, Corrêa SA, Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway[J]. Cell Mol Life Sci, 2016, 73(23):4397-4413. DOI: 10.1007/s00018-016-2297-8. [35] Zheng RS, Zhang SW, Sun KX, et al. [Cancer statistics in China, 2016][J]. Zhonghua Zhong Liu Za Zhi, 2023, 45(3):212-220. DOI: 10.3760/cma.j.cn112152-20220922- 00647. [36] Jin D, Guo J, Wu Y, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC[J]. Mol Cancer, 2020, 19(1):40. DOI: 10.1186/s12943-020- 01161-1. [37] Lin S, Choe J, Du P, et al. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells[J]. Mol Cell, 2016, 62(3):335-345. DOI: 10.1016/j.molcel.2016.03.021. [38] Yu W, Zhang C, Wang Y, et al. YAP 5-methylcytosine modification increases its mRNA stability and promotes the transcription of exosome secretion-related genes in lung adenocarcinoma[J]. Cancer Gene Ther, 2023, 30(1):149-162. DOI: 10.1038/s41417-022-00533-7. [39] Cui X, Wang Z, Li J, et al. Cross talk between RNA N6-methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through Wnt/β-catenin signalling pathway[J]. Cell Prolif, 2020, 53(3):e12768. DOI: 10.1111/cpr.12768. [40] Liu L, Wang J, Sun G, et al. m6A mRNA methylation regulates CTNNB1 to promote the proliferation of hepatoblastoma[J]. Mol Cancer, 2019, 18(1):188. DOI: 10.1186/s12943-019-1119-7. [41] Chen SL, Liu LL, Wang CH, et al. Loss of RDM1 enhances hepatocellular carcinoma progression via p53 and Ras/Raf/ERK pathways[J]. Mol Oncol, 2020, 14(2):373-386. DOI: 10.1002/1878-0261.12593. [42] Lin X, Chai G, Wu Y, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J]. Nat Commun, 2019, 10(1):2065. DOI: 10.1038/s41467-019-09865-9. [43] Zhang C, Zhang M, Ge S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer[J]. Cancer Med, 2019, 8(10):4766-4781. DOI: 10.1002/cam4.2360. [44] Pi J, Wang W, Ji M, et al. YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7[J]. Cancer Res, 2021, 81(10):2651-2665. DOI: 10.1158/0008-5472.CAN-20-0066. [45] Guo C, Chu H, Gong Z, et al. HOXB13 promotes gastric cancer cell migration and invasion via IGF-1R upregulation and subsequent activation of PI3K/AKT/mTOR signaling pathway[J]. Life Sci, 2021, 278:119522. DOI: 10.1016/j.lfs.2021.119522. [46] Wang N, Huo X, Zhang B, et al. METTL3-Mediated ADAMTS9 suppression facilitates angiogenesis and carcinogenesis in gastric cancer[J]. Front Oncol, 2022, 12:861807. DOI: 10.3389/fonc.2022.861807. [47] Bai Y, Yang C, Wu R, et al. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma[J]. Front Oncol, 2019, 9:332. DOI: 10.3389/fonc.2019.00332. [48] Deng R, Cheng Y, Ye S, et al. m6A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways[J]. Onco Targets Ther, 2019, 12:4391-4402. DOI: 10.2147/OTT.S201052. [49] Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway[J]. J Exp Clin Cancer Res, 2019, 38(1):393. DOI: 10.1186/s13046-019-1408-4. [50] Su J, Wu G, Ye Y, et al. NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization[J]. Oncogene, 2021, 40(39):5814- 5828. DOI: 10.1038/s41388-021-01978-0. [51] 杨诗敏,王充,张春晓,等.m5C甲基化在肿瘤中的调控机制和功能研究进展[J].现代肿瘤医学,2023,31(14):2732- 2737.DOI:10.3969/j.issn.1672-4992.2023.14.032. |
[1] | 曾宪虎 李明 李子龙 项旭 田慧 李惠珠 马龙杰 方笑丽 陈力 唐冉. 中西医关于溃疡性结肠炎的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1415-1418. |
[2] | 高雯雯 张翔 王红 尹雁惠. 小肠细菌过度生长的治疗新进展 [J]. 国际医药卫生导报, 2024, 30(9): 1418-1421. |
[3] | 孙虓 刘成霞 王娜 郝佳慧 储琳琳 栗成钰. 探讨胃“炎癌转化”中腐胺与巨噬细胞极化的关系 [J]. 国际医药卫生导报, 2024, 30(9): 1426-1429. |
[4] | 王文斌 郭小花 郑兆华 郭曼 孙力. 帕博利珠单抗联合白蛋白紫杉醇与卡培他滨方案治疗进展期胃癌患者的疗效评估 [J]. 国际医药卫生导报, 2024, 30(9): 1430-1434. |
[5] | 李纯 杜巧婷 刘令令. 初产妇产后缺乳中西医治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1446-1449. |
[6] | 何祥琴 杨芳 丁国锋. 中成药相关肝损伤研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1450-1453. |
[7] | 杨寿娟 张海涛 崔明丽 王建 李洋 程艳丽. Wnt信号通路在急性心肌梗死中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1291-1296. |
[8] | 刘志强 张翠 董文敬 刘振 孙经武. 心肌纤维化与AMPK-mTOR-ULK1信号通路研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1297-1300. |
[9] | 邹皓珍 杨佳 席哲帆 纪瑞 董华. 单细胞RNA测序技术在肾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1307-1311. |
[10] | 赵博 李思维 邢甜 高萍 朱宏喆 李敏. TRPV1通道在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1057-1062. |
[11] | 李孟奇 李朋 杜刚强 孙鸿朔 张锴. 长骨骨不连的发病率及手术治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1062-1066. |
[12] | 丁嘉雯 李娜. ESBLs阳性肺炎克雷伯菌的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1071-1074. |
[13] | 陈晓琳, 杨贞. HR-HPV载量与宫颈上皮内病变及宫颈癌相关性的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 932-935. |
[14] | 邹皓珍 杨佳 席哲帆 纪瑞 董华. 单细胞RNA测序应用于继发性肾病的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 936-940. |
[15] | 王宇威 李瑞 刘超 梁葵香. 妊娠相关静脉血栓栓塞症的诊断和防治策略研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 940-945. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||