国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (6): 936-940.DOI: 10.3760/cma.j.issn.1007-1245.2024.06.011
单细胞RNA测序应用于继发性肾病的研究进展
邹皓珍 杨佳 席哲帆 纪瑞 董华
滨州医学院附属医院肾内科,滨州 256603
收稿日期:
2023-10-18
出版日期:
2024-03-01
发布日期:
2024-03-29
通讯作者:
董华,Email:donghua197704@sina.com
基金资助:
山东省医药卫生科技发展计划(2016WS0048)
Advances in single-cell RNA sequencing in secondary nephrosis
Zou Haozhen, Yang Jia, Xi Zhefan, Ji Rui, Dong Hua
Department of Nephrology, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2023-10-18
Online:
2024-03-01
Published:
2024-03-29
Contact:
Dong Hua, Email: donghua197704@sina.com
Supported by:
Shandong Province Medicine and Health Science and Technology Development Program (2016WS0048)
摘要:
糖尿病肾病、狼疮性肾炎是主要的继发性肾病,是导致终末期肾病的重要原因。探究继发性肾病发生发展过程有利于减少肾功能损害。肾脏细胞具有高度分化且结构复杂的特点,传统测序方法只能探究一类细胞的平均转录水平及关系。近年来,单细胞RNA测序(single-cell RNA-sequencing,scRNA-seq)技术迅猛发展,以高通量及高分辨率对肾组织、血液、尿液细胞样本进行分析,识别新的细胞类型和状态,绘制细胞图谱,从细胞水平维度揭示肾脏疾病的复杂机制,发现生物标志物和细胞特异性。该文就scRNA-seq技术在常见继发性肾病的应用进展进行综述。
邹皓珍 杨佳 席哲帆 纪瑞 董华.
单细胞RNA测序应用于继发性肾病的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 936-940.
Zou Haozhen, Yang Jia, Xi Zhefan, Ji Rui, Dong Hua.
Advances in single-cell RNA sequencing in secondary nephrosis [J]. International Medicine and Health Guidance News, 2024, 30(6): 936-940.
[1] 王梦洁,董伟,梁馨苓. 单细胞RNA测序在肾脏疾病研究中的应用与前景[J]. 临床肾脏病杂志,2021,21(8):681-684. DOI:10.3969/j.issn.1671-2390.y20-118. [2] 周莹,黄华艺. 单细胞测序技术及其在肿瘤研究和临床诊断中的应用[J]. 分子诊断与治疗杂志,2017,9(3):147-153,172. DOI:10.3969/j.issn.1674-6929.2017.03.001. [3] 陈麒麟. 单细胞RNA测序在肾脏疾病研究中的应用[J]. 肾脏病与透析肾移植杂志,2019,28(4):355-359. DOI:10.3969/j.issn.1006-298X.2019.04.012. [4] Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5):377-382. DOI: 10.1038/nmeth.1315. [5] Zhang X, Marjani SL, Hu Z, et al. Single-cell sequencing for precise cancer research: progress and prospects[J]. Cancer Res, 2016,76(6):1305-1312. DOI: 10.1158/0008-5472.CAN-15-1907. [6] Guo H, Zhu P, Guo F, et al. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing[J]. Nat Protoc, 2015,10(5):645-659. DOI: 10.138/nprot.2015.039. [7] Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015,523(7561): 486-490. DOI: 10.1038/nature14590. [8] Wang YJ, Zhao MM, Zhang Y. Integrated analysis of single-cell RNA-seq and bulk RNA-seq in the identification of a novel ceRNA network and key biomarkers in diabetic kidney disease[J]. INT J GEN MED, 2022,15:1985-2001. DOI:10.214 7/IJGM.S351971. [9] Mohan A, Singh RS, Kumari M, et al. Urinary exosomal microRNA-451-5p is a potential early biomarker of diabetic nephropathy in rats[J]. PLoS One, 2016,11(4): e154055. DOI: 10.1371/journal.pone.0154055. [10] Zhang X, Chao P, Zhang L, et al. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease[J]. Front Immunol, 2023, 14: 1030198. DOI: 10.3389/fimmu.2023.1030198. [11] Liu S, Zhao Y, Lu S, et al. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy[J]. Genome Med, 2023,15(1):2. DOI: 10.1186/s13073-022-01145-4. [12] Lu X, Li L, Suo L, et al. Single-cell RNA sequencing profiles identify important pathophysiologic factors in the progression of diabetic nephropathy[J]. Front Cell Dev Biol, 2022,10:798316. DOI: 10.3389/fcell.2022.798316. [13] Zhang Y, Li W, Zhou Y. Identification of hub genes in diabetic kidney disease via multiple-microarray analysis[J]. Ann Transl Med, 2020,8(16):997. DOI: 10.21037/atm-20-5171. [14] Fu J, Sun Z, Wang X, et al. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease[J]. Kidney Int, 2022,102(6): 1291-1304. DOI: 10.1016/j.kint.2022. 08.026. [15] Fu J, Akat KM, Sun Z, et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease[J]. J Am Soc Nephrol, 2019,30(4):533-545. DOI: 10.1681/ASN.2018090896. [16] Roumeliotis A, Roumeliotis S, Tsetsos F, et al. Oxidative stress genes in diabetes mellitus type 2: association with diabetic kidney disease[J]. Oxid Med Cell Longev, 2021,2021:2531062. DOI: 10.1155/2021/2531062. [17] McKnight AJ, Patterson CC, Pettigrew KA, et al. A GREM1 gene variant associates with diabetic nephropathy[J]. J Am Soc Nephrol, 2010, 21(5):773-781. DOI: 10.1681/ASN.2009070773. [18] Kamiyama M, Kobayashi M, Araki S, et al. Polymorphisms in the 3' UTR in the neurocalcin delta gene affect mRNA stability, and confer susceptibility to diabetic nephropathy[J]. Hum Genet, 2007, 122(3-4): 397-407. DOI: 10.1007/s00439-007-0414-3. [19] Pei D, Huang YJ, Hsieh CH, et al. The genetic background difference between diabetic patients with and without nephropathy in a Taiwanese population by linkage disequilibrium mapping using 382 autosomal STR markers[J]. Genet Test Mol Biomarkers, 2010,14(3):433-438. DOI: 10.1089/gtmb.2009.0179. [20] Gu HF, Alvarsson A, Efendic S, et al. SOX2 has gender-specific genetic effects on diabetic nephropathy in samples from patients with type 1 diabetes mellitus in the GoKinD study[J]. Gend Med, 2009,6(4):555-564. DOI: 10.1016/j.genm.2009.11.001. [21] Zhang Y, Zhao X, Li C, et al. Aberrant NAD synthetic flux in podocytes under diabetic conditions and effects of indoleamine 2,3-dioxygenase on promoting de novo NAD synthesis[J]. Biochem Biophys Res Commun, 2023,643:61-68. DOI: 10.1016/j.bbrc.2022.12.059. [22] Wang Y, Niu A, Pan Y, et al. Profile of podocyte translatome during development of type 2 and type 1 diabetic nephropathy using podocyte-specific TRAP mRNA RNA-seq[J]. Diabetes, 2021,70(10): 2377-2390. DOI: 10.2337/db21-0110. [23] 翁维维,于生友,于力,等. 自噬相关基因LC3在阿霉素肾病中mRNA表达的意义[J]. 国际医药卫生导报,2020,26(11):1538-1541. DOI:10.3760/cma.j.issn.1007-1245. 2020. 11.015. [24] Abedini A, Zhu YO, Chatterjee S, et al. Urinary single-cell profiling captures the cellular diversity of the kidney[J]. J Am Soc Nephrol, 2021,32(3): 614-627. DOI:10.1681/ASN.20200 50757. [25] Stewart BJ, Ferdinand JR, Clatworthy MR. Using single-cell technologies to map the human immune system - implications for nephrology[J]. Nat Rev Nephrol, 2020,16(2):112-128. DOI: 10.1038/s41581-019-0227-3. [26] Wu J, Sun Z, Yang S, et al. Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice[J]. Mol Ther, 2022, 30(4): 1741-1753. DOI: 10.1016/j.ymthe. 2021.10.013. [27] Wu H, Gonzalez Villalobos R, Yao X, et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies[J]. Cell Metab,2022,34(7):1064-1078. DOI: 10.1016/j.cmet.2022.05.010. [28] Dalbøge LS, Christensen M, Madsen MR, et al. Nephroprotective effects of semaglutide as mono-and combination treatment with lisinopril in a mouse model of hypertension-accelerated diabetic kidney disease[J]. Biomedicines, 2022,10(7):1661. DOI: 10.3390/biomedicines10071661. [29] Wang X, Xiang J, Huang G, et al. Inhibition of podocytes DPP4 activity is a potential mechanism of lobeliae Chinensis herba in treating diabetic kidney disease[J]. Front Pharmacol, 2021, 12:779652. DOI: 10.3389/fphar.2021.779652. [30] Maria NI, Davidson A. Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy[J]. Nat Rev Rheumatol, 2020,16(5): 255-267. DOI: 10.1038/s41584-020-0401-9. [31] Nakano M, Iwasaki Y, Fujio K. Transcriptomic studies of systemic lupus erythematosus[J]. Inflamm Regen, 2021,41(1):11. DOI: 10.1186/s41232-021-00161-y. [32] Nehar-Belaid D, Hong S, Marches R, et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level[J]. Nat Immunol, 2020, 21(9): 1094-1106. DOI: 10.1038/s41590-020-0743-0. [33] Vanarsa K, Soomro S, Zhang T, et al. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis[J]. Ann Rheum Dis, 2020, 79(10):1349-1361. DOI: 10.1136/annrheumdis- 2019-216312. [34] Arazi A, Rao DA, Berthier CC, et al. The immune cell landscape in kidneys of patients with lupus nephritis[J]. Nat Immunol, 2019,20(7):902-914. DOI: 10.1038/s41590-019-0398-x. [35] Fava A, Buyon J, Mohan C, et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-gamma response gradient in lupus nephritis[J]. JCI Insight, 2020, 5(12): e138345. DOI: 10.1172/jci.insight.138345. [36] Peterson KS, Huang JF, Zhu J, et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli[J]. J Clin Invest, 2004,113(12):1722-1733. DOI: 10.1172/JCI19139. [37] Der E, Suryawanshi H, Morozov P, et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways[J]. Nat Immunol, 2019, 20(7): 915-927. DOI: 10.1038/s41590-019-0386-1. [38] Der E, Ranabothu S, Suryawanshi H, et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis[J]. JCI Insight, 2017, 2(9): e93009. DOI: 10.1172/jci.insight.93009. [39] Chen Z, Zhang T, Mao K, et al. A single-cell survey of the human glomerulonephritis[J]. J Cell Mol Med, 2021, 25(10):4684-4695. DOI: 10.1111/jcmm.16407. [40] Fava A, Rao DA, Mohan C, et al. Urine proteomics and renal single-cell transcriptomics implicate interleukin-16 in lupus nephritis[J]. Arthritis Rheumatol, 2022, 74(5): 829-839. DOI: 10.1002/art.42023. [41] Zhang T, Li H, Vanarsa K, et al. Association of urine sCD163 with proliferative lupus nephritis, fibrinoid necrosis, cellular crescents and intrarenal M2 macrophages[J]. Front Immunol, 2020, 11: 671. DOI: 10.3389/fimmu.2020.00671. [42] Tang C, Fang M, Tan G, et al. Discovery of novel circulating immune complexes in lupus nephritis using immunoproteomics[J]. Front Immunol, 2022,13:850015. DOI: 103389/fimmu. 2022.850015. [43] Song K, Zheng X, Liu X, et al. Genome-wide association study of SNP- and gene-based approaches to identify susceptibility candidates for lupus nephritis in the Han Chinese population[J]. Front Immunol, 2022,13:908851. DOI: 10.3389/fimmu.2022.908851. [44] Ye H, Su B, Ni H, et al. microRNA-199a may be involved in the pathogenesis of lupus nephritis via modulating the activation of NF-kappaB by targeting Klotho[J]. Mol Immunol, 2018,103:235-242. DOI: 10.1016/j.molimm. 2018.10.003. [45] Chuang HC, Chen MH, Chen YM, et al. BPI overexpression suppresses Treg differentiation and induces exosome-mediated inflammation in systemic lupus erythematosus[J]. Theranostics, 2021,11(20):9953-9966. DOI: 10.7150/thno.63743. [46] Qi YY, Zhao XY, Liu XR, et al. Lupus susceptibility region containing CTLA4 rs17268364 functionally reduces CTLA4 expression by binding EWSR1 and correlates IFN-alpha signature[J]. Arthritis Res Ther, 2021,23(1):279. DOI: 10.1186/s13075-021-02664-y. [47] Zhou C, Bai X, Yang Y, et al. Single-cell sequencing informs that mesenchymal stem cell alleviates renal injury through regulating kidney regional immunity in lupus nephritis[J]. Stem Cells Dev, 2023, 32(15-16):465-483. DOI: 10.1089/scd.2023.0047. [48] Peng J, Wang Y, Han X, et al. Clinical implications of a new DDX58 pathogenic variant that causes lupus nephritis due to rig-i hyperactivation[J]. J Am Soc Nephrol, 2023,34(2): 258-272. DOI: 10.1681/ASN.2022040477. [49] Ma Q, Xu M, Jing X, et al. Honokiol suppresses the aberrant interactions between renal resident macrophages and tubular epithelial cells in lupus nephritis through the NLRP3/IL-33/ST2 axis[J]. Cell Death Dis, 2023,14(3):174. DOI: 10.1038/s41419-023- 05680-9. [50] 邢海帆,范瑛. 单细胞RNA测序应用于肾小球疾病研究的进展[J]. 上海交通大学学报(医学版),2022,42(10):1458-1465. DOI:10.3969/j.issn.1674-8115.2022.10.012. [51] 高山凤,肖轩,张玲羽,等. 单细胞测序技术在生殖研究中的应用[J]. 中国细胞生物学学报,2020,42(12):2234-2243. DOI:10.11844/cjcb.2020.12.0015. [52] Kaur H, Advani A. The study of single cells in diabetic kidney disease[J]. J Nephrol, 2021,34(6):1925-1939. DOI: 10.1007/s40620-020-00964-1. |
[1] | 赵博 李思维 邢甜 高萍 朱宏喆 李敏. TRPV1通道在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1057-1062. |
[2] | 李孟奇 李朋 杜刚强 孙鸿朔 张锴. 长骨骨不连的发病率及手术治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1062-1066. |
[3] | 丁嘉雯 李娜. ESBLs阳性肺炎克雷伯菌的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1071-1074. |
[4] | 刘睿茜 杨阳 高金祥. 应用托伐普坦治疗糖尿病肾病综合征所致顽固性水肿个案分析 [J]. 国际医药卫生导报, 2024, 30(7): 1172-1176. |
[5] | 陈晓琳, 杨贞. HR-HPV载量与宫颈上皮内病变及宫颈癌相关性的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 932-935. |
[6] | 王宇威 李瑞 刘超 梁葵香. 妊娠相关静脉血栓栓塞症的诊断和防治策略研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 940-945. |
[7] | 吴侨侨. 老年患者麻醉术前评估的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 946-948. |
[8] | 郑梅 陆颖 木大为. 铁死亡在阿尔茨海默病中的作用机制及研究进展 [J]. 国际医药卫生导报, 2024, 30(5): 705-709. |
[9] | 陈妙玲 韩玉贞. PD-L1与肿瘤相关巨噬细胞在乳腺癌中的研究进展 [J]. 国际医药卫生导报, 2024, 30(5): 732-735. |
[10] | 孙春燕 林晓青 夏新建 杨英亮. 2型糖尿病患者脑结构与糖化血红蛋白关系的影像学研究进展 [J]. 国际医药卫生导报, 2024, 30(5): 763-766. |
[11] | 温俊萍 周艳颜 彭晓辉. 5E护理模式在糖尿病肾病患者中的应用效果 [J]. 国际医药卫生导报, 2024, 30(5): 793-796. |
[12] | 潘广涛 陈爱莹. 肠道免疫因素在炎症性肠病中的研究进展及治疗策略 [J]. 国际医药卫生导报, 2024, 30(4): 577-581. |
[13] | 陈秋宇 刘享田 叶莉萍 田行瀚. ICU患者肺炎克雷伯菌血流感染的特点、新型诊断及治疗方案研究进展 [J]. 国际医药卫生导报, 2024, 30(4): 581-585. |
[14] | 古路路 吴福玲. 葛根素在呼吸系统疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(4): 586-589. |
[15] | 于潇杰 程立浩 张浩 张浩杰 杨振林. 铁死亡与乳腺癌患者化疗耐药的关系研究进展 [J]. 国际医药卫生导报, 2024, 30(3): 353-356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||