[1] Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease[J].Nat Rev Dis Primers,2021,7(1):33.DOI:10.1038/s41572-021-00269-y.
[2] Ma H, Dong Y, Chu Y, et al. The mechanisms of ferroptosis and its role in alzheimer's disease[J].Front Mol Biosci,2022,9:965064.DOI:10.3389/fmolb.2022.965064.
[3] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.DOI:10.1016/j.cell.2012.03.042.
[4] Lill R, Srinivasan V, Mühlenhoff U. The role of mitochondria in cytosolic-nuclear iron–sulfur protein biogenesis and in cellular iron regulation[J].Curr Opin Microbiol,2014,22:111-119.DOI:10.1016/j.mib.2014.09.015.
[5] Gudjoncik A, Guenancia C, Zeller M, et al. Iron, oxidative stress, and redox signaling in the cardiovascular system[J].Mol Nutr Food Res,2014,58(8):1721-1738.DOI:10.1002/mnfr.201400036.
[6] Tang M, Chen Z, Wu D, et al. Ferritinophagy/ferroptosis: iron-related newcomers in human diseases[J].J Cell Physiol,2018,233(12):9179-9190.DOI:10.1002/jcp.26954.
[7] Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J].Autophagy,2016,12(8):1425-1428.DOI:10.1080/15548627.2016.1187366.
[8] Han X. Lipidomics for studying metabolism[J].Nat Rev Endocrinol,2016,12(11):668-679.DOI:10.1038/nrendo.2016.98.
[9] Zheng J, Conrad M. The metabolic underpinnings of ferroptosis[J].Cell Metab,2020,32(6):920-937.DOI:10.1016/j.cmet.2020.10.011.
[10] Dixon SJ, Winter GE, Musavi LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J].ACS Chem Biol,2015,10(7):1604-1609.DOI:10.1021/acschembio.5b00245.
[11] Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J].Nat Chem Biol,2017,13(1):91-98.DOI:10.1038/nchembio.2239.
[12] Chen H, Qi Q, Wu N, et al. Aspirin promotes RSL3-induced ferroptosis by suppressing mTOR/SREBP-1/SCD1-mediated lipogenesis in PIK3CA-mutant colorectal cancer[J].Redox Biol,2022,55:102426.DOI:10.1016/j.redox.2022.102426.
[13] Shintoku R, Takigawa Y, Yamada K, et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3[J].Cancer Sci,2017,108(11):2187-2194.DOI:10.1111/cas.13380.
[14] 程峰,张庸,王祥,等. 谷胱甘肽过氧化物酶GPX4在铁死亡中的作用与机制研究进展[J]. 现代肿瘤医学,2021,29(7):1254-1258.DOI:10.3969/j.issn.1672-4992.2021.07.033.
[15] Koppula P, Zhang Y, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J].Cancer Commun (Lond),2018,38(1):12.DOI:10.1186/s40880-018-0288-x.
[16] Jiang L, Hickman JH, Wang SJ, et al. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses[J].Cell Cycle,2015,14(18):2881-2885.DOI:10.1080/15384101.2015.1068479.
[17] Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J].Nature,2019,575(7784):688-692.DOI:10.1038/s41586-019-1705-2.
[18] Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J].Nature,2019,575(7784):693-698.DOI:10.1038/s41586- 019-1707-0.
[19] Mao C, Liu X, Zhang Y, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J].Nature,2021,593(7860):586-590.DOI:10.1038/s41586-021- 03539-7.
[20] Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J].ACS Cent Sci,2020,6(1):41-53.DOI:10.1021/acscentsci.9b01063.
[21] Bao WD, Pang P, Zhou XT, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease[J].Cell Death Differ,2021,28(5):1548-1562.DOI:10.1038/s41418-020-00685-9.
[22] Park MW, Cha HW, Kim J, et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in alzheimer's diseases[J].Redox Biol,2021,41:101947.DOI:10.1016/j.redox.2021.101947.
[23] Hambright WS, Fonseca RS, Chen L, et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration[J].Redox Biol,2017,12:8-17.DOI:10.1016/j.redox.2017.01.021.
[24] Ashraf A, Jeandriens J, Parkes HG, et al. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: evidence of ferroptosis[J].Redox Biol,2020,32:101494.DOI:10.1016/j.redox.2020.101494.
[25] Ramos P, Santos A, Pinto NR, et al. Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes[J].J Trace Elem Med Biol,2014,28(1):13-17.DOI:10.1016/j.jtemb.2013.08.001.
[26] Duce JA, Tsatsanis A, Cater MA, et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease[J].Cell,2010,142(6):857-867.DOI:10.1016/j.cell.2010.08.014.
[27] Belaidi AA, Gunn AP, Wong BX, et al. Marked age-related changes in brain iron homeostasis in amyloid protein precursor knockout mice[J].Neurotherapeutics,2018,15(4):1055-1062.DOI:10.1007/s13311-018-0656-x.
[28] Ashraf A, So PW. Spotlight on ferroptosis: iron-dependent cell death in Alzheimer's disease[J].Front Aging Neurosci,2020,12:196.DOI:10.3389/fnagi.2020.00196.
[29] Zhou ZD, Tan EK. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases[J].Mol Neurodegener,2017,12(1):75.DOI:10.1186/s13024-017-0218-4.
[30] Wan W, Cao L, Kalionis B, et al. Iron deposition leads to hyperphosphorylation of tau and disruption of insulin signaling[J].Front Neurol,2019,10:607.DOI:10.3389/fneur.2019.00607.
[31] Sultana R, Perluigi M, Butterfield DA. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain[J].Free Radic Biol Med,2013,62:157-169.DOI:10.1016/j.freeradbiomed.2012.09.027.
[32] Ferré-González L, Peña-Bautista C, Baquero M, et al. Assessment of lipid peroxidation in Alzheimer's disease differential diagnosis and prognosis[J].Antioxidants (Basel),2022,11(3):551.DOI:10.3390/antiox11030551.
[33] Zhang H, Morgan TE, Forman HJ. Age-related alteration in HNE elimination enzymes[J].Arch Biochem Biophys,2021,699:108749.DOI:10.1016/j.abb.2020.108749.
[34] Dare LR, Garcia A, Soares CB, et al. The reversal of memory deficits in an Alzheimer's disease model using physical and cognitive exercise[J].Front Behav Neurosci,2020,14:152.DOI:10.3389/fnbeh.2020.00152.
[35] Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation[J].Trends Cell Biol,2016,26(3):165-176.DOI:10.1016/j.tcb.2015.10.014.
[36] Bok E, Leem E, Lee BR, et al. Role of the lipid membrane and membrane proteins in tau pathology[J].Front Cell Dev Biol,2021,9:653815.DOI:10.3389/fcell.2021.653815.
[37] Zhang Y, Wang M, Chang W. Iron dyshomeostasis and ferroptosis in Alzheimer's disease: molecular mechanisms of cell death and novel therapeutic drugs and targets for AD[J].Front Pharmacol,2022,13:983623.DOI:10.3389/fphar.2022.983623.
[38] D'Ezio V, Colasanti M, Persichini T. Amyloid-β 25-35 induces neurotoxicity through the up-regulation of astrocytic system Xc[J].Antioxidants (Basel),2021,10(11):1685.DOI:10.3390/antiox10111685.
[39] Wang C, Chen S, Guo H, et al. Forsythoside a mitigates Alzheimer's-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation[J].Int J Biol Sci,2022,18(5):2075-2090.DOI:10.7150/ijbs.69714.
[40] Li X, Chen J, Feng W, et al. Berberine ameliorates iron levels and ferroptosis in the brain of 3 × Tg-AD mice[J].Phytomedicine,2023,118:154962.DOI:10.1016/j.phymed.2023.154962.
[41] Momiyama Y. Serum coenzyme Q10 levels as a predictor of dementia in a Japanese general population[J].Atherosclerosis,2014,237(2):433-434.DOI:10.1016/j.atherosclerosis.2014.08.056.
[42] Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, et al. Coenzyme Q10 and dementia: a systematic review[J].Antioxidants (Basel),2023,12(2):533.DOI:10.3390/antiox12020533.
[43] Fawzi SF, Menze ET, Tadros MG. Deferiprone ameliorates memory impairment in scopolamine-treated rats: the impact of its iron-chelating effect on β-amyloid disposition[J].Behav Brain Res,2020,378:112314.DOI:10.1016/j.bbr.2019.112314.
[44] Nolan JM, Power R, Howard AN, et al. Supplementation with carotenoids, omega-3 fatty acids, and vitamin E has a positive effect on the symptoms and progression of Alzheimer's disease[J].J Alzheimers Dis,2022,90(1):233-249.DOI:10.3233/JAD-220556.
[45] Farina N, Llewellyn D, Isaac MGEKN, et al. Vitamin E for Alzheimer's dementia and mild cognitive impairment[J].Cochrane Database Syst Rev,2017,4(4):CD002854.DOI:10.1002/14651858.CD002854.pub5.
[46] Kryscio RJ, Abner EL, Caban-Holt A, et al. Association of antioxidant supplement use and dementia in the prevention of Alzheimer's disease by vitamin E and selenium trial (PREADViSE)[J].JAMA Neurol,2017,74(5):567-573.DOI:10.1001/jamaneurol.2016.5778.
[47] Zhang YH, Wang DW, Xu SF, et al. α-lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S tau transgenic mice[J].Redox Biol,2018,14:535-548.DOI:10.1016/j.redox.2017.11.001.
[48] Greenough MA, Lane DJR, Balez R, et al. Selective ferroptosis vulnerability due to familial Alzheimer's disease presenilin mutations[J].Cell Death Differ,2022,29(11):2123-2136.DOI:10.1038/s41418-022-01003-1.
|