[1] Onkar SS, Carleton NM, Lucas PC, et al. The great immune escape: understanding the divergent immune response in breast cancer subtypes [J]. Cancer Discov, 2023, 13(1): 23-40. DOI: 10.1158/2159-8290.CD-22-0475.
[2] Zhang L, Chen W, Liu S, et al. Targeting breast cancer stem cells [J]. Int J Biol Sci, 2023, 19(2): 552-570. DOI: 10.7150/ijbs.76187.
[3] 李卫星. 阿帕替尼治疗复发性三阴乳腺癌的临床疗效分析[J]. 国际医药卫生导报, 2020, 26(21): 3287-3290. DOI: 10.3760/cma.j.issn.1007-1245.2020.21.028.
[4] Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy [J]. Biochim Biophys Acta Gen Subj, 2017, 1861(8): 1893-1900. DOI: 10.1016/j.bbagen.2017.05.019.
[5] Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge [J]. Cells, 2019, 8(9): 957. DOI: 10.3390/cells8090957.
[6] Ford RC, Beis K. Learning the ABCs one at a time: structure and mechanism of ABC transporters [J]. Biochem Soc Trans, 2019, 47(1): 23-36. DOI: 10.1042/BST20180147.
[7] Rouhrazi H, Turgan N, Oktem G. Zoledronic acid overcomes chemoresistance by sensitizing cancer stem cells to apoptosis [J]. Biotech Histochem, 2018, 93(2): 77-88. DOI: 10.1080/10520295.2017.1387286.
[8] Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications [J]. Cell, 2022, 185(14): 2401-2421. DOI: 10.1016/j.cell.2022.06.003.
[9] Fang X, Ardehali H, Min J, et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease [J]. Nat Rev Cardiol, 2023, 20(1): 7-23. DOI: 10.1038/s41569-022-00735-4.
[10] Shi Z, Zhang L, Zheng J, et al. Ferroptosis: biochemistry and biology in cancers[J]. Front Oncol, 2021, 11: 579286. DOI:10.3389/fonc.2021.579286.
[11] Wang S, Luo J, Zhang Z, et al. Iron and magnetic: new research direction of the ferroptosis-based cancer therapy [J]. Am J Cancer Res, 2018, 8(10): 1933-1946.
[12] Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer [J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. DOI: 10.1038/s41571-020- 00462-0.
[13] Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. DOI:10.1038/s41392-020-00428-9.
[14] Lu B, Chen XB, Ying MD, et al. The role of ferroptosis in cancer development and treatment response [J]. Front Pharmacol, 2017, 8: 992. DOI: 10.3389/fphar.2017.00992.
[15] Xu T, Ding W, Ji X, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy [J]. J Cell Mol Med. 2019, 23(8): 4900-4912. DOI:10.1111/jcmm.14511
[16] Yang F, Xiao Y, Ding JH, et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy [J]. Cell Metab, 2023, 35(1): 84-100. DOI: 10.1016/j.cmet.2022.09.021.
[17] Yu H, Yang C, Jian L, et al. Sulfasalazine‑induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor[J]. Oncol Rep, 2019, 42(2): 826-838. DOI: 10.3892/or.2019.7189.
[18] Li S, He Y, Chen K, et al. RSL3 drives ferroptosis through NF-kappaB pathway activation and GPX4 depletion in glioblastoma [J]. Oxid Med Cell Longev, 2021: 2915019. DOI: 10.1155/2021/2915019.
[19] Bai X, Ni J, Beretov J, et al. Activation of the eIF2alpha/ATF4 axis drives triple-negative breast cancer radioresistance by promoting glutathione biosynthesis [J]. Redox Biol, 2021, 43: 101993. DOI: 10.1016/j.redox.2021.101993.
[20] Chen MS, Wang SF, Hsu CY, et al. CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2alpha-ATF4 pathway [J]. Oncotarget, 2017, 8(70): 114588-114602. DOI: 10.18632/oncotarget.23055.
[21] Shi Z, Naowarojna N, Pan Z, et al. Author correction: multifaceted mechanisms mediating cystine starvation-induced ferroptosis [J]. Nat Commun, 2023, 14(1): 980. DOI: 10.1038/s41467-023-36659-x.
[22] Zhu J, Dai P, Liu F, et al. Upconverting nanocarriers enable triggered microtubule inhibition and concurrent ferroptosis induction for selective treatment of triple-negative breast cancer [J]. Nano Lett, 2020, 20(9): 6235-6245. DOI: 10.1021/acs.nanolett.0c00502.
[23] Antoniak MA, Pazik R, Bazylinska U, et al. Multimodal polymer encapsulated CdSe/Fe(3)O(4) nanoplatform with improved biocompatibility for two-photon and temperature stimulated bioapplications [J]. Mater Sci Eng C Mater Biol Appl, 2021, 127: 112224. DOI: 10.1016/j.msec.2021.112224.
[24] Ma S, Dielschneider RF, Henson ES, et al. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells[J]. PLoS One. 2017, 12(8): e182921. DOI: 10.1371/journal.pone.0182921.
[25] Xu X, Chen Y, Zhang Y, et al. Highly stable and biocompatible hyaluronic acid-rehabilitated nanoscale MOF-Fe2+ induced ferroptosis in breast cancer cells [J]. J Mater Chem B, 2020. DOI: 10.1039/d0tb01616k.
[26] Du J, Wang L, Huang X, et al. Shuganning injection, a traditional Chinese patent medicine, induces ferroptosis and suppresses tumor growth in triple-negative breast cancer cells [J]. Phytomedicine, 2021, 85: 153551. DOI: 10.1016/j.phymed.2021.153551.
[27] Yang Y, Liu T, Hu C, et al. Ferroptosis inducer erastin downregulates androgen receptor and its splice variants in castration-resistant prostate cancer [J]. Oncol Rep, 2021, 45(4): 25. DOI: 10.3892/or.2021.7976.
[28] Song X, Wang X, Liu Z, et al. Role of GPX4-mediated ferroptosis in the sensitivity of triple negative breast cancer cells to gefitinib [J]. Front Oncol, 2020, 10: 597434. DOI: 10.3389/fonc.2020.597434.
[29] Li H, Yang P, Wang J, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk [J]. J Hematol Oncol, 2022, 15(1): 2. DOI: 10.1186/s13045-021-01223-x.
[30] Nieto C, Vega MA, Martín Del Valle EM. Tailored-made polydopamine nanoparticles to induce ferroptosis in breast cancer cells in combination with chemotherapy [J]. Int J Mol Sci, 2021, 22(6): 3161. DOI: 10.3390/ijms22063161.
[31] 江山,戴曦,杨小琼,等.基于铁死亡相关的lncRNA在肺鳞癌预后的分析[J].广州医药,2022,53(5):113-120, 133. DOI:10.3969/j.issn.1000-8535.2022.05.024.
|