[1] Jiang L, Liang W, Shen J, et al. The impact of visceral pleural invasion in node-negative non-small cell lung cancer: a systematic review and meta-analysis[J]. Chest, 2015, 148(4): 903-911. DOI: 10.1378/chest.14-2765.
[2] Zhang H, Lu C, Lu Y, et al. The predictive and prognostic values of factors associated with visceral pleural involvement in resected lung adenocarcinomas[J]. Onco Targets Ther, 2016, 9:2337-2348. DOI: 10.2147/OTT.S100965.
[3] Tian D, Pei Y, Zheng Q, et al. Effect of visceral pleural invasion on the prognosis of patients with lymph node negative non-small cell lung cancer[J]. Thorac Cancer, 2017, 8(2):97-105. DOI: 10.1111/1759-7714.12412.
[4] Neri S, Menju T, Sowa T, et al. Prognostic impact of microscopic vessel invasion and visceral pleural invasion and their correlations with epithelial-mesenchymal transition, cancer stemness, and treatment failure in lung adenocarcinoma[J]. Lung Cancer, 2019, 128:13-19. DOI: 10.1016/j.lungcan.2018.12.001.
[5] Jiwangga D, Cho S, Kim K, et al. Recurrence pattern of pathologic stage I lung adenocarcinoma with visceral pleural invasion[J]. Ann Thorac Surg, 2017, 103(4):1126-1131. DOI: 10.1016/j.athoracsur.2016.09.052.
[6] Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM Classification for lung cancer[J]. J Thorac Oncol, 2016, 11(1):39-51. DOI: 10.1016/j.jtho.2015.09.009.
[7] 周建云,沈蓉,代魁,等. 弹性纤维染色在评估肺癌胸膜侵犯中的应用价值[J]. 中国组织化学与细胞化学杂志,2020,29(2):171-174. DOI:10.16705/j.cnki.1004-1850.2020. 02.012.
[8] 李炫呈,黄云超,赵光强,等. 脏层胸膜侵犯在非小细胞肺癌中诊断与预后的研究进展[J]. 中国医学创新,2022,19(24):184-188. DOI:10.3969/j.issn.1674-4985.2022.24.043.
[9] Liang RB, Li P, Li BT, et al. Modification of pathologic t classification for non-small cell lung cancer with visceral pleural invasion: data from 1,055 cases of cancers ≤ 3 cm[J]. Chest, 2021,160(2): 754-764. DOI: 10.1016/j.chest.2021.03.022.
[10] 丁闻洁,赵继开,吴佳君,等. 弹力纤维染色与双重免疫组化染色在肺腺癌胸膜侵犯判断的应用及体会[J]. 临床与实验病理学杂志,2020,36(12):1484-1486. DOI:10.13315/j.cnki.cjcep.2020.12.027.
[11] Wang F, Li P, Li F. Nomogram for predicting the relationship between the extent of visceral pleural invasion and survival in non-small-cell lung cancer[J]. Can Respir J, 2021, 2021:8816860. DOI: 10.1155/2021/8816860.
[12] 王敏,平国强,张炜明,等. 弹力纤维及广谱型角蛋白双重染色与单纯弹力纤维染色在肺癌可疑胸膜侵犯病例中的比较[J]. 临床与实验病理学杂志,2018,34(6):650-654. DOI:10.13315/j.cnki.cjcep.2018.06.014.
[13] Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial[J]. Lancet, 2022, 399(10335): 1607-1617. DOI: 10.1016/S0140-6736(21)02333-3.
[14] Deng HY, Li G, Luo J, et al. Novel biologic factors correlated to visceral pleural invasion in early-stage non-small cell lung cancer less than 3 cm[J]. J Thorac Dis, 2018, 10(4): 2357-2364. DOI: 10.21037/jtd.2018.03.185.
[15] Yip R, Ma T, Flores RM, et al. Survival with parenchymal and pleural invasion of non-small cell lung cancers less than 30 mm[J]. J Thorac Oncol, 2019, 14(5):890-902. DOI: 10.1016/j.jtho.2019.01.013.
[16] Snoeckx A. Visceral pleural invasion: predictable on CT?[J]. Quant Imaging Med Surg, 2019, 9(12): 2019-2022. DOI: 10.21037/qims.2019.11.03.
[17] Zhao Q, Wang JW, Yang L, et al. CT diagnosis of pleural and stromal invasion in malignant subpleural pure ground-glass nodules: an exploratory study[J]. Eur Radiol, 2019, 29(1):279-286. DOI: 10.1007/s00330-018-5558-0.
[18] Heidinger BH, Schwarz-Nemec U, Anderson KR, et al. Visceral pleural invasion in pulmonary adenocarcinoma: differences in CT patterns between solid and subsolid cancers[J]. Radiol Cardiothorac Imaging, 2019, 1(3): e190071. DOI: 10.1148/ryct.2019190071.
[19] Jiang Y, Xiong Z, Zhao W, et al. Pathological components and CT imaging analysis of the area adjacent pleura within the pure ground-glass nodules with pleural deformation in invasive lung adenocarcinoma[J]. BMC Cancer, 2022, 22(1): 958. DOI: 10.1186/s12885-022- 10043-2.
[20] Burris NS, Johnson KM, Larson PE, et al. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system[J]. Radiology, 2016, 278(1): 239-246. DOI: 10.1148/radiol.2015150489.
[21] 王紫君,黄劲柏,邱大胜,等. 18F-FDG PET-CT显像在预测肺癌淋巴结分期中的价值[J]. 中国医学计算机成像杂志,2020,26(2):164-169. DOI:10.3969/j.issn.1006-5741. 2020.02.014.
[22] Zhang Y, Kwon W, Lee HY, et al. Imaging assessment of visceral pleural surface invasion by lung cancer: comparison of CT and contrast-enhanced radial T1-weighted gradient echo 3-tesla MRI[J]. Korean J Radiol, 2021, 22(5):829-839. DOI: 10.3348/kjr.2020. 0955.
[23] Lee H , Choi E H , Lee M ,et al. Morphologic evaluation of primary non-small cell lung cancer by 3 tesla MRI with free-breathing ultrashort echo time and radial T1-weighted gradient echo sequences: a comparison with CT analysis[J]. Journal of the Korean Society of Radiology, 2019, 80(3): 466-476. DOI:10.3348/jksr.2019.80.3.466.
[24] Tsuchiya N, Doai M, Usuda K, et al. Non-small cell lung cancer: whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion[J]. PLoS One, 2017, 12(2): e0172433. DOI: 10.1371/journal.pone. 0172433.
[25] Thiberville L, Salaün M, Lachkar S, et al. Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy[J]. Eur Respir J, 2009, 33(5):974-85. DOI: 10.1183/09031936.00083708.
[26] Takizawa H, Kondo K, Kawakita N, et al. Autofluorescence for the diagnosis of visceral pleural invasion in non-small-cell lung cancer[J]. Eur J Cardiothorac Surg, 2018, 53(5): 987-992. DOI: 10.1093/ejcts/ezx419.
[27] Kitada M, Ohsaki Y, Yasuda S, et al. Photodynamic diagnosis of visceral pleural invasion of lung cancer with a combination of 5-aminolevulinic acid and autofluorescence observation systems[J]. Photodiagnosis Photodyn Ther, 2017, 20: 10-15. DOI: 10.1016/j.pdpdt.2017.08.013.
[28] Sawada T, Takizawa H, Aoyama M, et al. Diagnosis of visceral pleural invasion using confocal laser endomicroscopy during lung cancer surgery[J]. J Thorac Dis, 2021, 13(8): 4742-4752. DOI: 10.21037/jtd-21-137.
[29] Wang L, Wu C, Qiao L, et al. Clinical significance of folate receptor-positive circulating tumor cells detected by ligand-targeted polymerase chain reaction in lung cancer[J]. J Cancer, 2017, 8(1): 104-110. DOI: 10.7150/jca.16856.
[30] Chen X, Zhou F, Li X, et al. Folate receptor-positive circulating tumor cells as a predictive biomarker for the efficacy of first-line pemetrexed-based chemotherapy in patients with non-squamous non-small cell lung cancer[J]. Ann Transl Med, 2020, 8(10):631. DOI: 10.21037/atm-19-4680.
[31] Yin W, Zhu J, Ma B, et al. Overcoming obstacles in pathological diagnosis of pulmonary nodules through circulating tumor cell enrichment[J]. Small, 2020, 16(25): e2001695. DOI: 10.1002/smll.202001695.
[32] Papadaki MA, Messaritakis I, Fiste O, et al. Assessment of the efficacy and clinical utility of different circulating tumor cell (CTC) detection assays in patients with chemotherapy-naïve advanced or metastatic non-small cell lung cancer (NSCLC) [J]. Int J Mol Sci, 2021, 22(2): 925. DOI: 10.3390/ijms22020925.
[33] Shi J, Li F, Yang F, et al. The combination of computed tomography features and circulating tumor cells increases the surgical prediction of visceral pleural invasion in clinical T1N0M0 lung adenocarcinoma[J]. Transl Lung Cancer Res, 2021, 10(11): 4266-4280. DOI: 10.21037/tlcr-21-896.
|