[1] Balzer MS, Rohacs T, Susztak K. How many cell types are in the kidney and what do they do? [J]. Annu Rev Physiol, 2022, 84:507-531. DOI: 10.1146/annurev- physiol- 052521-121841.
[2] Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5):377-382. DOI: 10.1038/nmeth.1315.
[3] Islam S, Kjällquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Res, 2011, 21(7):1160-1167. DOI: 10.1101/gr.110882.110.
[4] Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30(8):777-782. DOI: 10.1038/nbt.2282.
[5] Hashimshony T, Wagner F, Sher N, et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3):666-673. DOI: 10.1016/j.celrep.2012.08.003.
[6] Sasagawa Y, Nikaido I, Hayashi T, et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity[J]. Genome Biol, 2013, 14(4):R31. DOI: 10.1186/gb-2013-14-4-r31.
[7] Picelli S, Faridani OR, Björklund AK, et al. Full-length RNA-seq from single cells using Smart-seq2[J]. Nat Protoc, 2014, 9(1):171-181. DOI: 10.1038/nprot. 2014.006.
[8] Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5):1187-1201. DOI: 10.1016/j.cell.2015.04.044.
[9] Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5):1202-1214. DOI: 10.1016/j.cell.2015.05.002.
[10] Gierahn TM, Wadsworth MH, Hughes TK, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput[J]. Nat Methods, 2017, 14(4):395-398. DOI: 10.1038/nmeth.4179.
[11] Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding[J]. Science, 2018, 360(6385):176-182. DOI: 10.1126/science.aam8999.
[12] Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease[J]. Nat Rev Nephrol, 2018, 14(8):479-492. DOI: 10.1038/s41581-018-0021-7.
[13] Wu H, Kirita Y, Donnelly EL, et al. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis[J]. J Am Soc Nephrol, 2019, 30(1):23-32. DOI: 10.1681/ASN.2018090912.
[14] Wyatt RJ, Julian BA. IgA nephropathy[J]. N Engl J Med, 2013, 368(25):2402-2414. DOI: 10.1056/NEJMra1206793.
[15] Tang R, Meng T, Lin W, et al. A partial picture of the single-cell transcriptomics of human IgA nephropathy[J]. Front Immunol, 2021, 12:645988. DOI: 10.3389/fimmu.2021.645988.
[16] 吴昌为.基于外周血单细胞转录组测序探讨IgA肾病发病机制[D].成都:电子科技大学,2020.
[17] 金美玲,李艳春,王佳,等.基于生物信息学的IgA肾病基因富集及免疫细胞浸润分析[J].中华肾病研究电子杂志,2021,10(4):205-213.DOI:10.3877/cma.j.issn.2095-3216.2021. 04.004.
[18] Ding Y, Li H, Xu L, et al. Identification and validation of prognostic biomarkers specifically expressed in macrophage in IgA nephropathy patients based on integrated bioinformatics analyses[J]. Front Mol Biosci, 2022, 9:884588. DOI: 10.3389/fmolb.2022.884588.
[19] Zheng Y, Lu P, Deng Y, et al. Single-cell transcriptomics reveal immune mechanisms of the onset and progression of IgA nephropathy[J]. Cell Rep, 2020, 33(12):108525. DOI: 10.1016/j.celrep.2020.108525.
[20] Chen Z, Zhang T, Mao K, et al. A single-cell survey of the human glomerulonephritis[J]. J Cell Mol Med, 2021, 25(10):4684-4695. DOI: 10.1111/jcmm.16407.
[21] Zeng H, Wang L, Li J, et al. Single-cell RNA-sequencing reveals distinct immune cell subsets and signaling pathways in IgA nephropathy[J]. Cell Biosci, 2021, 11(1):203. DOI: 10.1186/s13578-021-00706-1.
[22] Du W, Gao CY, You X, et al. Increased proportion of follicular helper T cells is associated with B cell activation and disease severity in IgA nephropathy[J]. Front Immunol, 2022, 13:901465. DOI: 10.3389/fimmu.2022.901465.
[23] Zambrano S, He L, Kano T, et al. Molecular insights into the early stage of glomerular injury in IgA nephropathy using single-cell RNA sequencing[J]. Kidney Int, 2022, 101(4):752-765. DOI: 10.1016/j.kint.2021.12.011.
[24] Abedini A, Zhu YO, Chatterjee S, et al. Urinary single-cell profiling captures the cellular diversity of the kidney[J]. J Am Soc Nephrol, 2021, 32(3):614-627. DOI: 10.1681/ASN.2020050757.
[25] Stewart BJ, Ferdinand JR, Clatworthy MR. Using single-cell technologies to map the human immune system - implications for nephrology[J]. Nat Rev Nephrol, 2020, 16(2):112-128. DOI: 10.1038/s41581-019-0227-3.
[26] Liu S, Zhao Y, Lu S, et al. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy[J]. Genome Med, 2023, 15(1):2. DOI: 10.1186/s13073-022-01145-4.
[27] Zhang X, Chao P, Zhang L, et al. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease[J]. Front Immunol, 2023, 14:1030198. DOI: 10.3389/fimmu.2023.1030198.
[28] Xu J, Shen C, Lin W, et al. Single-cell profiling reveals transcriptional signatures and cell-cell crosstalk in anti-PLA2R positive idiopathic membranous nephropathy patients[J]. Front Immunol, 2021, 12:683330. DOI: 10.3389/fimmu.2021.683330.
[29] Sealfon R, Mariani L, Avila-Casado C, et al. Molecular characterization of membranous nephropathy[J]. J Am Soc Nephrol, 2022, 33(6):1208-1221. DOI: 10.1681/ASN.2021060784.
[30] Kong F, Ye S, Zhong Z, et al. Single-cell transcriptome analysis of chronic antibody-mediated rejection after renal transplantation[J]. Front Immunol, 2022, 12:767618. DOI: 10.3389/fimmu.2021.767618.
[31] Teng L, Shen L, Zhao W, et al. SLAMF8 participates in acute renal transplant rejection via TLR4 pathway on pro-inflammatory macrophages[J]. Front Immunol, 2022, 13:846695. DOI: 10.3389/fimmu.2022.846695.
[32] Zhuang Q, Li H, Peng B, et al. Single-cell transcriptomic analysis of peripheral blood reveals a novel B-cell subset in renal allograft recipients with accommodation[J]. Front Pharmacol, 2021, 12:706580. DOI: 10.3389/fphar.2021. 706580.
[33] Xu H, Wang M, Li Y, et al. Blocking connexin 43 and its promotion of ATP release from renal tubular epithelial cells ameliorates renal fibrosis[J]. Cell Death Dis, 2022, 13(5):511. DOI: 10.1038/s41419-022-04910-w.
[34] Wu R, Li J, Tu G, et al. Comprehensive molecular and cellular characterization of acute kidney injury progression to renal fibrosis[J]. Front Immunol, 2021, 12:699192. DOI: 10.3389/fimmu.2021.699192.
[35] Portilla D, Xavier S. Role of intracellular complement activation in kidney fibrosis[J]. Br J Pharmacol, 2021, 178(14):2880-2891. DOI: 10.1111/bph.15408.
[36] Lafzi A, Moutinho C, Picelli S, et al. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies[J]. Nat Protoc, 2018, 13(12):2742-2757. DOI: 10.1038/s41596-018-0073-y.
[37] 邢海帆,范瑛.单细胞RNA测序应用于肾小球疾病研究的进展[J].上海交通大学学报(医学版),2022,42(10):1458-1465.DOI:10.3969/j.issn.1674-8115.2022.10.012.
[38] 晁珊珊,卜鹏程.单细胞转录组测序技术发展及应用[J].中国细胞生物学学报,2019,41(5):834-840.DOI:10.11844/cjcb.2019.05.0005.
[39] 高山凤,肖轩,张玲羽,等.单细胞测序技术在生殖研究中的应用[J].中国细胞生物学学报,2020,42(12):2234-2243.DOI:10.11844/cjcb.2020.12.0015.
[40] Kaur H, Advani A. The study of single cells in diabetic kidney disease[J]. J Nephrol, 2021, 34(6):1925-1939. DOI: 10.1007/s40620-020-00964-1.
|