国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (8): 1291-1296.DOI: 10.3760/cma.j.issn.1007-1245.2024.08.013
Wnt信号通路在急性心肌梗死中的研究进展
杨寿娟1 张海涛2 崔明丽1 王建1 李洋1 程艳丽1
1滨州医学院附属医院心内科,滨州 256603;2滨州医学院附属医院神经外科,滨州 256603
收稿日期:
2023-10-19
出版日期:
2024-04-15
发布日期:
2024-05-05
通讯作者:
程艳丽,Email:chengyanli0217@126.com
基金资助:
山东省自然科学基金青年项目(ZR2020QH104)
Research progress of Wnt signaling pathway in acute myocardial infarction
Yang Shoujuan1, Zhang Haitao2, Cui Mingli1, Wang Jian1, Li Yang1, Cheng Yanli1
1 Department of Cardiology, Binzhou Medical University Hospital, Binzhou 256603, China; 2 Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2023-10-19
Online:
2024-04-15
Published:
2024-05-05
Contact:
Cheng Yanli, Email: chengyanli0217@126.com
Supported by:
Shandong Province Natural Science Foundation Youth Project (ZR2020QH104)
摘要:
Wnt信号通路是由配体蛋白Wnt和膜蛋白受体结合激发下游信号分子产生级联反应的信号转导途径。Wnt信号通路是调控细胞生长、增殖、分化的关键途径。急性心肌梗死(AMI)后心肌细胞再生能力有限,成纤维细胞大量增殖,形成瘢痕组织,心肌重构导致左心室功能下降。因此,促进心肌再生、减少瘢痕面积对于心肌梗死后心脏功能的改善具有重要意义。无论是在正常的心肌细胞还是心血管疾病形成和发展过程中,均有Wnt信号通路的参与。研究Wnt信号通路在AMI中的作用可以为AMI治疗提供新的依据与思路。本文对Wnt信号通路在AMI发展过程中的相关研究进展进行综述。
杨寿娟 张海涛 崔明丽 王建 李洋 程艳丽.
Wnt信号通路在急性心肌梗死中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1291-1296.
Yang Shoujuan, Zhang Haitao, Cui Mingli, Wang Jian, Li Yang, Cheng Yanli.
Research progress of Wnt signaling pathway in acute myocardial infarction [J]. International Medicine and Health Guidance News, 2024, 30(8): 1291-1296.
[1] van Zandvoort LJC, Otsuka K, Villiger M, et al. Polarimetric signatures of coronary thrombus in patients with acute coronary syndrome[J]. Circ J, 2021, 85(10):1806-1813. DOI: 10.1253/circj.CJ-20-0862. [2] Yasue H, Mizuno Y, Harada E. Coronary artery spasm - clinical features, pathogenesis and treatment[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2019,95(2):53-66. DOI: 10.2183/pjab.95.005. [3] Sano T, Ito T, Ishigami S, et al. Intrinsic activation of cardiosphere-derived cells enhances myocardial repair[J]. J Thorac Cardiovasc Surg, 2022, 163(4):1479-1490.e5. DOI: 10.1016/j.jtcvs.2020.05.040. [4] Sun X, Malandraki-Miller S, Kennedy T, et al. The extracellular matrix protein agrin is essential for epicardial epithelial-to-mesenchymal transition during heart development[J]. Development, 2021, 148(9):dev197525. DOI: 10.1242/dev.197525. [5] Haseeb M, Pirzada RH, Ain QU, et al. Wnt signaling in the regulation of immune cell and cancer therapeutics[J]. Cells, 2019, 8(11):1380. DOI: 10.3390/cells8111380. [6] 刘玉,冯立波.心肌梗死与Wnt信号通路的相关性研究现状[J].重庆医学,2017,46(6):845-848.DOI:10.3969/j.issn.1671-8348.2017.06.041. [7] Barandon L, Casassus F, Leroux L, et al. Secreted frizzled-related protein-1 improves postinfarction scar formation through a modulation of inflammatory response[J]. Arterioscler Thromb Vasc Biol, 2011, 31(11):e80-e87. DOI: 10.1161/ATVBAHA.111.232280. [8] Morishita Y, Kobayashi K, Klyachko E, et al. Wnt11 gene therapy with adeno-associated virus 9 improves recovery from myocardial infarction by modulating the inflammatory response[J]. Sci Rep, 2016, 6:21705. DOI: 10.1038/srep21705. [9] Mizutani M, Wu JC, Nusse R. Fibrosis of the neonatal mouse heart after cryoinjury is accompanied by Wnt signaling activation and epicardial-to-mesenchymal transition[J]. J Am Heart Assoc, 2016, 5(3):e002457. DOI: 10.1161/JAHA.115.002457. [10] Wang J, Xia Y, Lu A, et al. Cardiomyocyte-specific deletion of β-catenin protects mouse hearts from ventricular arrhythmias after myocardial infarction[J]. Sci Rep, 2021, 11(1):17722. DOI: 10.1038/s41598-021-97176-9. [11] Liu Y, Neogi A, Mani A. The role of Wnt signalling in development of coronary artery disease and its risk factors[J]. Open Biol, 2020, 10(10):200128. DOI: 10.1098/rsob.200128. [12] Paik DT, Rai M, Ryzhov S, et al. Wnt10b gain-of-function improves cardiac repair by arteriole formation and attenuation of fibrosis[J]. Circ Res, 2015, 117(9):804-816. DOI: 10.1161/CIRCRESAHA.115.306886. [13] Palevski D, Levin-Kotler LP, Kain D, et al. Loss of macrophage Wnt secretion improves remodeling and function after myocardial infarction in mice[J]. J Am Heart Assoc, 2017, 6(1):e004387. DOI: 10.1161/JAHA.116. 004387. [14] Moon J, Zhou H, Zhang LS, et al. Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist[J]. Proc Natl Acad Sci U S A, 2017, 114(7):1649-1654. DOI: 10.1073/pnas.1621346114. [15] Barandon L, Couffinhal T, Ezan J, et al. Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA[J]. Circulation, 2003, 108(18):2282-2289. DOI: 10.1161/01.CIR.0000093186.22847.4C. [16] 印纹源.分泌型卷曲相关蛋白1在心血管疾病中的研究进展[J].中国心血管病研究,2019,17(4):300-304.DOI:10.3969/j.issn.1672-5301.2019.04.003. [17] Tao J, Wang YT, Abudoukelimu M, et al. Association of genetic variations in the Wnt signaling pathway genes with myocardial infarction susceptibility in Chinese Han population[J]. Oncotarget, 2016, 7(33):52740-52750. DOI: 10.18632/oncotarget.10401. [18] Nakamura K, Sano S, Fuster JJ, et al. Secreted frizzled-related protein 5 diminishes cardiac inflammation and protects the heart from ischemia/reperfusion injury[J]. J Biol Chem, 2016, 291(6):2566-2575. DOI: 10.1074/jbc.M115.693937. [19] Mirotsou M, Zhang Z, Deb A, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair[J]. Proc Natl Acad Sci U S A, 2007, 104(5):1643-1648. DOI: 10.1073/pnas.0610024104. [20] Daskalopoulos EP, Blankesteijn WM. Effect of interventions in WNT signaling on healing of cardiac injury: a systematic review[J]. Cells, 2021, 10(2):207. DOI: 10.3390/cells10020207. [21] Guan H, Zhang J, Luan J, et al. Secreted frizzled related proteins in cardiovascular and metabolic diseases[J]. Front Endocrinol (Lausanne), 2021, 12:712217. DOI: 10.3389/fendo.2021.712217. [22] Yin C, Ye Z, Wu J, et al. Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction[J]. EBioMedicine, 2021, 74:103745. DOI: 10.1016/j.ebiom.2021.103745. [23] Bovolenta P, Esteve P, Ruiz JM, et al. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease[J]. J Cell Sci, 2008, 121(Pt 6):737-746. DOI: 10.1242/jcs.026096. [24] Snead AN, Insel PA. Defining the cellular repertoire of GPCRs identifies a profibrotic role for the most highly expressed receptor, protease-activated receptor 1, in cardiac fibroblasts[J]. FASEB J, 2012, 26(11):4540-4547. DOI: 10.1096/fj.12-213496. [25] Chen L, Wu Q, Guo F, et al. Expression of Dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migration[J]. J Cell Mol Med, 2004, 8(2):257-264. DOI: 10.1111/j.1582-4934.2004.tb00281.x. [26] Badimon L, Casaní L, Camino-Lopez S, et al. GSK3β inhibition and canonical Wnt signaling in mice hearts after myocardial ischemic damage[J]. PLoS One, 2019, 14(6):e0218098. DOI: 10.1371/journal.pone.0218098.. [27] Fu WB, Wang WE, Zeng CY. Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors[J]. Acta Pharmacol Sin, 2019, 40(1):9-12. DOI: 10.1038/s41401-018-0060-4. [28] Uitterdijk A, Hermans KC, de Wijs-Meijler DP, et al. UM206, a selective Frizzled antagonist, attenuates adverse remodeling after myocardial infarction in swine[J]. Lab Invest, 2016, 96(2):168-176. DOI: 10.1038/labinvest.2015.139. [29] Joiner DM, Ke J, Zhong Z, et al. LRP5 and LRP6 in development and disease[J]. Trends Endocrinol Metab, 2013, 24(1):31-39. DOI: 10.1016/j.tem.2012.10.003. [30] Ngo D, Sinha S, Shen D, et al. Aptamer-based proteomic profiling reveals novel candidate biomarkers and pathways in cardiovascular disease[J]. Circulation, 2016, 134(4):270-285. DOI: 10.1161/CIRCULATIONAHA.116. 021803. [31] Borrell-Pages M, Vilahur G, Romero JC, et al. LRP5/canonical Wnt signalling and healing of ischemic myocardium[J]. Basic Res Cardiol, 2016, 111(6):67. DOI: 10.1007/s00395-016-0585-y. [32] Wo D, Peng J, Ren DN, et al. Opposing roles of Wnt inhibitors IGFBP-4 and Dkk1 in cardiac ischemia by differential targeting of LRP5/6 and β-catenin[J]. Circulation, 2016, 134(24):1991-2007. DOI: 10.1161/CIRCULATIONAHA.116.024441. [33] Li YH, Wu MH, Lee WJ, et al. A synergistic effect between plasma Dickkopf-1 and obstructive coronary artery disease on the prediction of major adverse cardiac events in patients with angina: an observational study[J]. Biomolecules, 2022, 12(10):1408. DOI: 10.3390/biom12101408. [34] Min JK, Park H, Choi HJ, et al. The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells[J]. J Clin Invest, 2011, 121(5):1882- 1893. DOI: 10.1172/JCI42556. [35] Sun HY, Wang XL, Ma LC, et al. Influence of MiR-154 on myocardial apoptosis in rats with acute myocardial infarction through Wnt/β-catenin signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(2):818-825. DOI: 10.26355/eurrev_201901_16896. [36] Zhai CG, Xu YY, Tie YY, et al. DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways[J]. J Mol Cell Cardiol, 2018, 114:243-252. DOI: 10.1016/j.yjmcc. 2017.11.018. [37] Lal H, Ahmad F, Woodgett J, et al. The GSK-3 family as therapeutic target for myocardial diseases[J]. Circ Res, 2015, 116(1):138-149. DOI: 10.1161/CIRCRESAHA.116. 303613. [38] Tariq U, Uppulapu SK, Banerjee SK. Role of GSK-3 in cardiac health: focusing on cardiac remodeling and heart failure[J]. Curr Drug Targets, 2021, 22(13):1568-1576. DOI: 10.2174/1389450122666210224105430. [39] Wang D, Zhang Y, Ye T, et al. Cthrc1 deficiency aggravates wound healing and promotes cardiac rupture after myocardial infarction via non-canonical WNT5A signaling pathway[J]. Int J Biol Sci, 2023, 19(4):1299-1315.DOI:10.7150/ijbs.79260. [40] Ahmad F, Marzook H, Gupta A, et al. GSK-3α aggravates inflammation, metabolic derangement, and cardiac injury post-ischemia/reperfusion[J]. J Mol Med (Berl), 2023, 101(11):1379-1396. DOI: 10.1007/s00109-023-02373-w. [41] Li YF, Wei TW, Fan Y, et al. Serine/threonine-protein kinase 3 facilitates myocardial repair after cardiac injury possibly through the glycogen synthase kinase-3β/β-catenin pathway[J]. J Am Heart Assoc, 2021, 10(22):e022802. DOI: 10.1161/JAHA.121.022802. [42] Thorne CA, Hanson AJ, Schneider J, et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α[J]. Nat Chem Biol, 2010, 6(11):829-836. DOI: 10.1038/nchembio.453. [43] Saraswati S, Alfaro MP, Thorne CA, et al. Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling[J]. PLoS One, 2010, 5(11):e15521. DOI: 10.1371/journal.pone.0015521. [44] Murakoshi M, Saiki K, Urayama K, et al. An anthelmintic drug, pyrvinium pamoate, thwarts fibrosis and ameliorates myocardial contractile dysfunction in a mouse model of myocardial infarction[J]. PLoS One, 2013, 8(11):e79374. DOI: 10.1371/journal.pone.0079374. [45] Oerlemans MI, Goumans MJ, van Middelaar B, et al. Active Wnt signaling in response to cardiac injury[J]. Basic Res Cardiol, 2010, 105(5):631-641. DOI: 10.1007/s00395-010-0100-9. [46] Aisagbonhi O, Rai M, Ryzhov S, et al. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition[J]. Dis Model Mech, 2011, 4(4):469-483. DOI: 10.1242/dmm.006510. [47] Alvandi Z, Nagata Y, Passos LSA, et al. Wnt site signaling inhibitor secreted Frizzled-related protein 3 protects mitral valve endothelium from myocardial infarction-induced endothelial-to-mesenchymal transition[J]. J Am Heart Assoc, 2022, 11(7):e023695. DOI: 10.1161/JAHA.121.023695. [48] Matteucci M, Casieri V, Gabisonia K, et al. Magnetic resonance imaging of infarct-induced canonical wingless/integrated (Wnt)/β-catenin/T-cell factor pathway activation, in vivo[J]. Cardiovasc Res, 2016, 112(3):645-655. DOI: 10.1093/cvr/cvw214. [49] Wang W, Shang W, Zou J, et al. ZNF667 facilitates angiogenesis after myocardial ischemia through transcriptional regulation of VASH1 and Wnt signaling pathway[J]. Int J Mol Med, 2022, 50(4):129. DOI: 10.3892/ijmm.2022.5185. [50] Hahn JY, Cho HJ, Bae JW, et al. Beta-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts[J]. J Biol Chem, 2006, 281(41):30979-30989. DOI: 10.1074/jbc.M603916200. [51] Pang P, Qu Z, Yu S, et al. Mettl14 attenuates cardiac ischemia/reperfusion injury by regulating Wnt1/β-catenin signaling pathway[J]. Front Cell Dev Biol, 2021, 9:762853. DOI: 10.3389/fcell.2021.762853. [52] Xie S, Fu W, Yu G, et al. Discovering small molecules as Wnt inhibitors that promote heart regeneration and injury repair[J]. J Mol Cell Biol, 2020, 12(1):42-54. DOI: 10.1093/jmcb/mjz023. [53] Sasaki T, Hwang H, Nguyen C, et al. The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium[J]. PLoS One, 2013, 8(9):e75010. DOI: 10.1371/journal.pone.0075010. [54] 李红艳,赵思涵,陈政,等.靶向Wnt信号通路在心肌梗死治疗中的研究进展[J].临床心血管病杂志,2020,36(5):479-484.DOI:10.13201/j.issn.1001-1439.2020.05.018. [55] Tang Y, Zhong Z, Wang X, et al. microRNA-497 inhibition mitigates myocardial infarction via enhancing wingless/integrated signal pathway in bone marrow mesenchymal stem cells[J]. J Cell Biochem, 2019, 120(8):13403-13412. DOI: 10.1002/jcb.28615. |
[1] | 曾宪虎 李明 李子龙 项旭 田慧 李惠珠 马龙杰 方笑丽 陈力 唐冉. 中西医关于溃疡性结肠炎的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1415-1418. |
[2] | 高雯雯 张翔 王红 尹雁惠. 小肠细菌过度生长的治疗新进展 [J]. 国际医药卫生导报, 2024, 30(9): 1418-1421. |
[3] | 孙虓 刘成霞 王娜 郝佳慧 储琳琳 栗成钰. 探讨胃“炎癌转化”中腐胺与巨噬细胞极化的关系 [J]. 国际医药卫生导报, 2024, 30(9): 1426-1429. |
[4] | 王文斌 郭小花 郑兆华 郭曼 孙力. 帕博利珠单抗联合白蛋白紫杉醇与卡培他滨方案治疗进展期胃癌患者的疗效评估 [J]. 国际医药卫生导报, 2024, 30(9): 1430-1434. |
[5] | 李纯 杜巧婷 刘令令. 初产妇产后缺乳中西医治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1446-1449. |
[6] | 何祥琴 杨芳 丁国锋. 中成药相关肝损伤研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1450-1453. |
[7] | 邹皓珍 杨佳 席哲帆 纪瑞 董华. 单细胞RNA测序技术在肾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1307-1311. |
[8] | 邵爽 郭纪伟 孟玮. m6A及m5C甲基化修饰通过促进细胞增殖与转移影响癌症的发生和发展 [J]. 国际医药卫生导报, 2024, 30(8): 1316-1320. |
[9] | 赵博 李思维 邢甜 高萍 朱宏喆 李敏. TRPV1通道在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1057-1062. |
[10] | 李孟奇 李朋 杜刚强 孙鸿朔 张锴. 长骨骨不连的发病率及手术治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1062-1066. |
[11] | 丁嘉雯 李娜. ESBLs阳性肺炎克雷伯菌的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1071-1074. |
[12] | 陈晓琳, 杨贞. HR-HPV载量与宫颈上皮内病变及宫颈癌相关性的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 932-935. |
[13] | 邹皓珍 杨佳 席哲帆 纪瑞 董华. 单细胞RNA测序应用于继发性肾病的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 936-940. |
[14] | 王宇威 李瑞 刘超 梁葵香. 妊娠相关静脉血栓栓塞症的诊断和防治策略研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 940-945. |
[15] | 吴侨侨. 老年患者麻醉术前评估的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 946-948. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||