国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (24): 4096-4106.DOI: 10.3760/cma.j.issn.1007-1245.2024.24.008
Wnt/β-catenin信号通路对阿尔茨海默病发病机制的研究进展
康国伟 李潇 赵瑞清 冯波
滨州医学院附属医院神经内科,滨州 256600
收稿日期:
2024-05-09
出版日期:
2024-12-15
发布日期:
2024-12-21
通讯作者:
冯波,Email:fpp-99@163.com
基金资助:
山东省中医药科技发展计划(2019-0502)
Research progress on the role of Wnt/β-catenin signaling pathway in the pathogenesis of Alzheimer's disease
Kang Guowei, Li Xiao, Zhao Ruiqing, Feng Bo
Department of Neurology, Binzhou Medical University Hospital, Binzhou 256600, China
Received:
2024-05-09
Online:
2024-12-15
Published:
2024-12-21
Contact:
Feng Bo, Email: fpp-99@163.com
Supported by:
Developmental Plan of Science and Technology of Traditional Chinese Medicine in Shandong Province (2019-0502)
摘要:
阿尔茨海默病(AD)是一种中枢神经系统退行性疾病,发病机制复杂多样。在AD中,Wnt/β-catenin信号通路的激活可调节炎症反应、改善突触功能和抗氧化应激。Wnt/β-catenin信号通路可能成为治疗AD的新靶点,为AD治疗提供新的研究方向。
康国伟 李潇 赵瑞清 冯波.
Wnt/β-catenin信号通路对阿尔茨海默病发病机制的研究进展 [J]. 国际医药卫生导报, 2024, 30(24): 4096-4106.
Kang Guowei, Li Xiao, Zhao Ruiqing, Feng Bo.
Research progress on the role of Wnt/β-catenin signaling pathway in the pathogenesis of Alzheimer's disease [J]. International Medicine and Health Guidance News, 2024, 30(24): 4096-4106.
[1] Hardan L, Filtchev D, Kassem R, et al. COVID-19 and Alzheimer's disease: a literature review[J]. Medicina (Kaunas), 2021, 57(11):1159. DOI: 10.3390/medicina57111159. [2] Li H, Liu CC, Zheng H, et al. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease -conformist, nonconformist, and realistic prospects for AD pathogenesis[J]. Transl Neurodegener, 2018, 7:34. DOI: 10.1186/s40035-018-0139-3. [3] Wilson DM, Cookson MR, Van Den Bosch L, et al. Hallmarks of neurodegenerative diseases[J]. Cell, 2023, 186(4):693-714. DOI: 10.1016/j.cell.2022.12.032. [4] Vallée A, Vallée JN, Lecarpentier Y. Wnt/β-catenin pathway: a possible link between hypertension and Alzheimer's disease[J]. Curr Hypertens Rep, 2022, 24(10):465-475. DOI: 10.1007/s11906-022-01209-1. [5] Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1):3. DOI: 10.1038/s41392-021-00762-6. [6] Jiang H, Zhang Z, Yu Y, et al. Drug discovery of DKK1 inhibitors[J]. Front Pharmacol, 2022, 13:847387. DOI: 10.3389/fphar.2022.847387. [7] Qi X, Hu Q, Elghobashi-Meinhardt N, et al. Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling[J]. Cell, 2023, 186(23):5028-5040.e14. DOI: 10.1016/j.cell.2023.09.021. [8] Zhong Q, Zhao Y, Ye F, et al. Cryo-EM structure of human Wntless in complex with Wnt3a[J]. Nat Commun, 2021, 12(1):4541. DOI: 10.1038/s41467-021-24731-3. [9] Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: phytochemical based modulation[J]. Phytomedicine, 2020, 76:153243. DOI: 10.1016/j.phymed.2020.153243. [10] Lin J, Song T, Li C, et al. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(5):118659. DOI: 10.1016/j.bbamcr.2020.118659. [11] Jin C, Wang T, Zhang D, et al. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac4C acetylation of KIF23 mRNA[J]. J Exp Clin Cancer Res, 2022, 41(1):345. DOI: 10.1186/s13046-022-02551-7. [12] Thornton TM, Hare B, Colié S, et al. Failure to inactivate nuclear GSK3β by Ser389-phosphorylation leads to focal neuronal death and prolonged fear response[J]. Neuropsychopharmacology, 2018, 43(2):393-405. DOI: 10.1038/npp.2017.187. [13] Shi Q, Chen YG. Regulation of Dishevelled protein activity and stability by post-translational modifications and autophagy[J]. Trends Biochem Sci, 2021, 46(12):1003-1016. DOI: 10.1016/j.tibs.2021.07.008. [14] Esaki N, Enomoto A, Takagishi M, et al. The Daple-CK1ε complex regulates Dvl2 phosphorylation and canonical Wnt signaling[J]. Biochem Biophys Res Commun, 2020, 532(3):406-413. DOI: 10.1016/j.bbrc.2020.08.066. [15] Surya K, Manickam N, Jayachandran KS, et al. Resveratrol mediated regulation of hippocampal neuroregenerative plasticity via SIRT1 pathway in synergy with Wnt signaling: neurotherapeutic implications to mitigate memory loss in Alzheimer's disease[J]. J Alzheimers Dis, 2023,94(s1):S125-S140. DOI: 10.3233/JAD-220559. [16] Wang Z, Li Z, Ji H. Direct targeting of β-catenin in the Wnt signaling pathway: current progress and perspectives[J]. Med Res Rev, 2021, 41(4):2109-2129. DOI: 10.1002/med.21787. [17] Park HB, Kim JW, Baek KH. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers[J]. Int J Mol Sci, 2020, 21(11):3904. DOI: 10.3390/ijms21113904. [18] Ng LF, Kaur P, Bunnag N, et al. WNT signaling in disease[J]. Cells, 2019, 8(8):826. DOI: 10.3390/cells8080826. [19] Ghafouri-Fard S, Noie Alamdari A, Noee Alamdari Y, et al. Role of PI3K/AKT pathway in squamous cell carcinoma with an especial focus on head and neck cancers[J]. Cancer Cell Int, 2022, 22(1):254. DOI: 10.1186/s12935-022-02676-x. [20] Li J, Wu F, Sheng F, et al. NOK/STYK1 interacts with GSK-3β and mediates Ser9 phosphorylation through activated Akt[J]. FEBS Lett, 2012, 586(21):3787-3792. DOI: 10.1016/j.febslet.2012.09.011. [21] Ege D. Action mechanisms of curcumin in Alzheimer's disease and its brain targeted delivery[J]. Materials (Basel), 2021, 14(12):3332. DOI: 10.3390/ma14123332. [22] Barzegar Behrooz A, Talaie Z, Jusheghani F, et al. Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma[J]. Int J Mol Sci, 2022, 23(3):1353. DOI: 10.3390/ijms23031353. [23] Fakhri S, Iranpanah A, Gravandi MM, et al. Natural products attenuate PI3K/Akt/mTOR signaling pathway: a promising strategy in regulating neurodegeneration[J]. Phytomedicine, 2021, 91:153664. DOI: 10.1016/j.phymed.2021.153664. [24] Tominaga K, Suzuki HI. TGF-β signaling in cellular senescence and aging-related pathology[J]. Int J Mol Sci, 2019, 20(20):5002. DOI: 10.3390/ijms20205002. [25] Kapoor M, Chinnathambi S. TGF-β1 signalling in Alzheimer's pathology and cytoskeletal reorganization: a specialized Tau perspective[J]. J Neuroinflammation, 2023, 20(1):72. DOI: 10.1186/s12974-023-02751-8. [26] Zhang G, Ge M, Han Z, et al. Wnt/β-catenin signaling pathway contributes to isoflurane postconditioning against cerebral ischemia-reperfusion injury and is possibly related to the transforming growth factorβ1/Smad3 signaling pathway[J]. Biomed Pharmacother, 2019, 110:420-430. DOI: 10.1016/j.biopha.2018.11.143. [27] Ma B, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation[J]. Front Immunol, 2016, 7:378. DOI: 10.3389/fimmu.2016.00378. [28] Yin C, Ye Z, Wu J, et al. Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction[J]. EBioMedicine, 2021, 74:103745. DOI: 10.1016/j.ebiom.2021.103745. [29] He J, Wo D, Ma E, et al. Huoxin pill prevents excessive inflammation and cardiac dysfunction following myocardial infarction by inhibiting adverse Wnt/β-catenin signaling activation[J]. Phytomedicine, 2022, 104:154293. DOI: 10.1016/j.phymed.2022.154293. [30] Piao C, Sang J, Kou Z, et al. Effects of exosomes derived from adipose-derived mesenchymal stem cells on pyroptosis and regeneration of injured liver[J]. Int J Mol Sci, 2022, 23(20):12065. DOI: 10.3390/ijms232012065. [31] Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J]. Nat Rev Neurol, 2021, 17(3):157-172. DOI: 10.1038/s41582-020-00435-y. [32] Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation[J]. J Neuroinflammation, 2023, 20(1):165. DOI: 10.1186/s12974-023-02853-3. [33] Chou V, Pearse RV, Aylward AJ, et al. INPP5D regulates inflammasome activation in human microglia[J]. Nat Commun, 2023, 14(1):7552. DOI: 10.1038/s41467-023- 42819-w. [34] Wadhwa M, Prabhakar A, Anand JP, et al. Complement activation sustains neuroinflammation and deteriorates adult neurogenesis and spatial memory impairment in rat hippocampus following sleep deprivation[J]. Brain Behav Immun, 2019, 82:129-144. DOI: 10.1016/j.bbi.2019. 08.004. [35] Barnabei L, Laplantine E, Mbongo W, et al. NF-κB: at the borders of autoimmunity and inflammation[J]. Front Immunol, 2021, 12:716469. DOI: 10.3389/fimmu.2021. 716469. [36] Liu X, Wang K, Wei X, et al. Interaction of NF-κB and Wnt/β-catenin signaling pathways in Alzheimer's disease and potential active drug treatments[J]. Neurochem Res, 2021, 46(4):711-731. DOI: 10.1007/s11064-021-03227-y. [37] Salem MA, Budzyńska B, Kowalczyk J, et al. Tadalafil and bergapten mitigate streptozotocin-induced sporadic Alzheimer's disease in mice via modulating neuroinflammation, PI3K/Akt, Wnt/β-catenin, AMPK/mTOR signaling pathways[J]. Toxicol Appl Pharmacol, 2021, 429:115697. DOI: 10.1016/j.taap.2021.115697. [38] Kong P, Cui ZY, Huang XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention[J]. Signal Transduct Target Ther, 2022, 7(1):131. DOI: 10.1038/s41392-022-00955-7. [39] Vallee A, Lecarpentier Y, Vallée JN. Wnt/β-catenin pathway and circadian rhythms in obsessive-compulsive disorder[J]. Neural Regen Res, 2022, 17(10):2126-2130. DOI: 10.4103/1673-5374.332133. [40] Kumar S, Reddy PH. The role of synaptic microRNAs in Alzheimer's disease[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(12):165937. DOI: 10.1016/j.bbadis.2020.165937. [41] Zhao J, Fu Y, Yamazaki Y, et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids[J]. Nat Commun, 2020, 11(1):5540. DOI: 10.1038/s41467-020-19264-0. [42] Roy ER, Wang B, Wan YW, et al. Type Ⅰ interferon response drives neuroinflammation and synapse loss in Alzheimer disease[J]. J Clin Invest, 2020, 130(4):1912-1930. DOI: 10.1172/JCI133737. [43] Wu C, Bendriem RM, Freed WJ, et al. Transcriptome analysis of human dorsal striatum implicates attenuated canonical Wnt signaling in neuroinflammation and in age-related impairment of striatal neurogenesis and synaptic plasticity[J]. Restor Neurol Neurosci, 2021,39(4):247-266. DOI: 10.3233/RNN-211161. [44] Predes D, Maia LA, Matias I, et al. The flavonol quercitrin hinders GSK3 activity and potentiates the Wnt/β-Catenin signaling pathway[J]. Int J Mol Sci, 2022, 23(20):12078. DOI: 10.3390/ijms232012078. [45] Godoy JA, Espinoza-Caicedo J, Inestrosa NC. Morphological neurite changes induced by porcupine inhibition are rescued by Wnt ligands[J]. Cell Commun Signal, 2021, 19(1):87. DOI: 10.1186/s12964-021- 00709-y. [46] Bai R, Guo J, Ye XY, et al. Oxidative stress: the core pathogenesis and mechanism of Alzheimer's disease[J]. Ageing Res Rev, 2022, 77:101619. DOI: 10.1016/j.arr.2022.101619. [47] Song T, Song X, Zhu C, et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: a meta-analysis of in vivo magnetic resonance spectroscopy studies[J]. Ageing Res Rev, 2021, 72:101503. DOI: 10.1016/j.arr.2021.101503. [48] Calvo-Rodriguez M, Kharitonova EK, Snyder AC, et al. Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid β aggregates in vivo in a mouse model of Alzheimer's disease[J]. Mol Neurodegener, 2024, 19(1):6. DOI: 10.1186/s13024-024-00702-2. [49] Abozaid OAR, Sallam MW, El-Sonbaty S, et al. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer's disease by regulating Sirt1/miRNA-134/GSK3β expression[J]. Biol Trace Elem Res, 2022, 200(12):5104-5114. DOI: 10.1007/s12011-021-03073-7. [50] Iwanowski T, Kołkowski K, Nowicki RJ, et al. Etiopathogenesis and emerging methods for treatment of vitiligo[J]. Int J Mol Sci, 2023, 24(11):9749. DOI: 10.3390/ijms24119749. [51] Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease[J]. Redox Biol, 2020, 36:101664. DOI: 10.1016/j.redox.2020.101664. [52] Chen X, Yao N, Mao Y, et al. Activation of the Wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions[J]. Neural Regen Res, 2024, 19(7):1541-1547. DOI: 10.4103/1673-5374.386398. [53] Wu JJ, Yang Y, Wan Y, et al. New insights into the role and mechanisms of ginsenoside Rg1 in the management of Alzheimer's disease[J]. Biomed Pharmacother, 2022, 152:113207. DOI: 10.1016/j.biopha.2022.113207. |
[1] | 姜泽军 汤胜宇 杨红玲. 炎症标志物在慢性心力衰竭临床预后评估中的作用 [J]. 国际医药卫生导报, 2025, 31(1): 42-46. |
[2] | 吴京霖 卢曼路 李明珍 刘璐 于燕 潘磊. 肠道菌群与阻塞性睡眠呼吸暂停综合征合并认知功能障碍的研究进展 [J]. 国际医药卫生导报, 2025, 31(1): 47-50. |
[3] | 曾宪虎 李明 李子龙 项旭 田慧 李惠珠 马龙杰 方笑丽 陈力 唐冉. 中西医关于溃疡性结肠炎的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1415-1418. |
[4] | 高雯雯 张翔 王红 尹雁惠. 小肠细菌过度生长的治疗新进展 [J]. 国际医药卫生导报, 2024, 30(9): 1418-1421. |
[5] | 孙虓 刘成霞 王娜 郝佳慧 储琳琳 栗成钰. 探讨胃“炎癌转化”中腐胺与巨噬细胞极化的关系 [J]. 国际医药卫生导报, 2024, 30(9): 1426-1429. |
[6] | 王文斌 郭小花 郑兆华 郭曼 孙力. 帕博利珠单抗联合白蛋白紫杉醇与卡培他滨方案治疗进展期胃癌患者的疗效评估 [J]. 国际医药卫生导报, 2024, 30(9): 1430-1434. |
[7] | 李纯 杜巧婷 刘令令. 初产妇产后缺乳中西医治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1446-1449. |
[8] | 何祥琴 杨芳 丁国锋. 中成药相关肝损伤研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1450-1453. |
[9] | 杨寿娟 张海涛 崔明丽 王建 李洋 程艳丽. Wnt信号通路在急性心肌梗死中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1291-1296. |
[10] | 邹皓珍 杨佳 席哲帆 纪瑞 董华. 单细胞RNA测序技术在肾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1307-1311. |
[11] | 邵爽 郭纪伟 孟玮. m6A及m5C甲基化修饰通过促进细胞增殖与转移影响癌症的发生和发展 [J]. 国际医药卫生导报, 2024, 30(8): 1316-1320. |
[12] | 赵博 李思维 邢甜 高萍 朱宏喆 李敏. TRPV1通道在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1057-1062. |
[13] | 李孟奇 李朋 杜刚强 孙鸿朔 张锴. 长骨骨不连的发病率及手术治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1062-1066. |
[14] | 丁嘉雯 李娜. ESBLs阳性肺炎克雷伯菌的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1071-1074. |
[15] | 陈晓琳, 杨贞. HR-HPV载量与宫颈上皮内病变及宫颈癌相关性的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 932-935. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||