国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (1): 47-50.DOI: 10.3760/cma.j.cn441417-20240730-01010
肠道菌群与阻塞性睡眠呼吸暂停综合征合并认知功能障碍的研究进展
吴京霖 卢曼路 李明珍 刘璐 于燕 潘磊
滨州医学院附属医院呼吸与危重症医学科,滨州 256603
收稿日期:
2024-07-30
出版日期:
2025-01-01
发布日期:
2025-01-13
通讯作者:
潘磊,Email:zypl781102@163.com
基金资助:
山东省自然科学基金(ZR2021MH360);滨州市农社领域科技创新政策引导计划(2023SHFZ033)
Recent advances of the research between gut microbiota and obstructive sleep apnea syndrome combined with cognitive impairment
Wu Jinglin, Lu Manlu, Li Mingzhen, Liu Lu, Yu Yan, Pan Lei
Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2024-07-30
Online:
2025-01-01
Published:
2025-01-13
Contact:
Pan Lei, Email: zypl781102@163.com
Supported by:
Natural Science Foundation of Shandong Province (ZR2021MH360); Science and Technology Innovation Project of Binzhou Social Development (2023SHFZ033)
摘要:
阻塞性睡眠呼吸暂停综合征(OSAS)是以间歇性低氧和睡眠碎片化为主要表现的一类疾病,严重影响患者的睡眠质量。OSAS易合并认知功能障碍,主要表现在记忆力、注意力、执行力等方面。目前认为,OSAS患者肠道内菌群稳态遭到破坏可能与认知功能障碍有关。本文就肠道菌群与OSAS合并认知功能障碍的相关研究进行综述。
吴京霖 卢曼路 李明珍 刘璐 于燕 潘磊.
肠道菌群与阻塞性睡眠呼吸暂停综合征合并认知功能障碍的研究进展 [J]. 国际医药卫生导报, 2025, 31(1): 47-50.
Wu Jinglin, Lu Manlu, Li Mingzhen, Liu Lu, Yu Yan, Pan Lei.
Recent advances of the research between gut microbiota and obstructive sleep apnea syndrome combined with cognitive impairment [J]. International Medicine and Health Guidance News, 2025, 31(1): 47-50.
[1] Qureshi A, Ballard RD. Obstructive sleep apnea[J]. J Allergy Clin Immunol, 2003, 112(4): 643-651, 652. DOI: 10.1016/j.jaci.2003.08.031. [2] Ko CY, Liu QQ, Su HZ, et al. Gut microbiota in obstructive sleep apnea-hypopnea syndrome: disease-related dysbiosis and metabolic comorbidities[J]. Clin Sci (Lond), 2019, 133(7): 905-917. DOI: 10.1042/CS20180891. [3] Li D, Xu N, Hou Y, et al. Abnormal lipid droplets accumulation induced cognitive deficits in obstructive sleep apnea syndrome mice via JNK/SREBP/ACC pathway but not through PDP1/PDC pathway[J]. Mol Med, 2022, 28(1): 3. DOI: 10.1186/s10020-021-00427-8. [4] Adak A, Khan MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3): 473-493. DOI: 10.1007/s00018-018-2943-4. [5] Kuziel GA, Rakoff-Nahoum S. The gut microbiome[J]. Curr Biol, 2022, 32(6): R257-R264. DOI: 10.1016/j.cub.2022. 02.023. [6] Lv R, Liu X, Zhang Y, et al. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome[J]. Signal Transduct Target Ther, 2023, 8(1): 218. DOI: 10.1038/s41392-023-01496-3. [7] Wei Y, Huang L, Liu C, et al. Causal relationship between gut microbiota and obstructive sleep apnea [J]. Arch Gerontol Geriatr, 2023, 113: 105052. DOI: 10.1016/j.archger.2023.105052. [8] Badran M, Khalyfa A, Ericsson AC, et al. Gut microbiota mediate vascular dysfunction in a murine model of sleep apnoea: effect of probiotics [J]. Eur Respir J, 2023, 61(1):2200002.. DOI: 10.1183/13993003.00002-2022. [9] Zhang C, Chen F, Shen Y, et al. Sleep apnea is associated with the increase of certain genera of ruminococcaceae and lachnospiraceae in the gut microbiome of hypertensive patients [J]. Expert Rev Respir Med, 2022, 16(11-12): 1247-1256. DOI: 10.1080/17476348.2022. 2147509. [10] Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication [J]. Front Endocrinol (Lausanne), 2020, 11: 25. DOI: 10.3389/fendo.2020.00025. [11] Liu W, Du Q, Zhang H, et al. The gut microbiome and obstructive sleep apnea syndrome in children [J]. Sleep Med, 2022, 100: 462-471. DOI: 10.1016/j.sleep.2022. 09.022. [12] Zhang Y, Luo H, Niu Y, et al. Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice [J]. Sleep Med, 2022, 91: 84-92. DOI: 10.1016/j.sleep.2022.02.003. [13] Wang F, Liu Q, Wu H, et al. The dysbiosis gut microbiota induces the alternation of metabolism and imbalance of Th17/Treg in OSA patients [J]. Arch Microbiol, 2022, 204(4): 217. DOI: 10.1007/s00203-022-02825-w. [14] 王利娟,杨冲,窦占军,等. 不同严重程度阻塞性睡眠呼吸暂停低通气患者肠道菌群特征初步分析[J]. 中华结核和呼吸杂志,2021,44(6):543-549. DOI:10.3760/cma.j.cn112147- 20201009-01027. [15] Ganesh BP, Nelson JW, Eskew JR, et al. Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of obstructive sleep apnea [J]. Hypertension, 2018, 72(5): 1141-1150. DOI: 10.1161/hypertensionaha.118.11695. [16] Moreno-Indias I, Torres M, Sanchez-Alcoholado L, et al. Normoxic recovery mimicking treatment of sleep apnea does not reverse intermittent hypoxia-induced bacterial dysbiosis and low-grade endotoxemia in mice [J]. Sleep, 2016, 39(10): 1891-1897. DOI: 10.5665/sleep.6176. [17] Barrio C, Arias-Sánchez S, Martín-Monzón I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: a systematic review [J]. Psychoneuroendocrinology, 2022, 137: 105640. DOI: 10.1016/j.psyneuen.2021.105640. [18] Dumitrescu L, Popescu-Olaru I, Cozma L, et al. Oxidative stress and the microbiota-gut-brain axis [J]. Oxid Med Cell Longev, 2018, 2018: 2406594. DOI: 10.1155/2018/2406594. [19] Patel A, Chong DJ. Obstructive sleep apnea [J]. Clin Geriatr Med, 2021, 37(3): 457-467. DOI: 10.1016/j.cger.2021. 04.007. [20] 卢曼路,朱继伟,丁红红,等. 阻塞性睡眠呼吸暂停低通气综合征与肠道菌群关系的研究进展[J]. 国际医药卫生导报,2024,30(10):1585-1589. DOI:10.3760/cma.j.issn.1007- 1245.2024.10.001. [21] Nagpal R, Neth BJ, Wang S, et al. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment [J]. EBioMedicine, 2019, 47: 529-542. DOI: 10.1016/j.ebiom.2019.08.032. [22] Hung CC, Chang CC, Huang CW, et al. Gut microbiota in patients with Alzheimer's disease spectrum: a systematic review and meta-analysis [J]. Aging (Albany NY), 2022, 14(1): 477-496. DOI: 10.18632/aging.203826. [23] Lee J, Venna VR, Durgan DJ, et al. Young versus aged microbiota transplants to germ-free mice: increased short-chain fatty acids and improved cognitive performance [J]. Gut Microbes, 2020, 12(1): 1-14. DOI: 10.1080/19490976.2020.1814107. [24] Prévot T, Sibille E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders [J]. Mol Psychiatry, 2021, 26(1): 151-167. DOI: 10.1038/s41380-020-0727-3. [25] Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression [J]. Cell Res, 2019, 29(10): 787-803. DOI: 10.1038/s41422-019- 0216-x. [26] Wang X, Wang Z, Cao J, et al. Gut microbiota-derived metabolites mediate the neuroprotective effect of melatonin in cognitive impairment induced by sleep deprivation [J]. Microbiome, 2023, 11(1): 17. DOI: 10.1186/s40168-022-01452-3. [27] Morley JE. An overview of cognitive impairment [J]. Clin Geriatr Med, 2018, 34(4): 505-513. DOI: 10.1016/j.cger.2018.06.003. [28] Lu X, Xue Z, Qian Y, et al. Changes in intestinal microflora and its metabolites underlie the cognitive impairment in preterm rats [J]. Front Cell Infect Microbiol, 2022, 12: 945851. DOI: 10.3389/fcimb.2022.945851. [29] Wu L, Han Y, Zheng Z, et al. Altered gut microbial metabolites in amnestic mild cognitive impairment and alzheimer's disease: signals in host–microbe interplay [J]. Nutrients, 2021, 13(1):228. DOI: 10.3390/nu13010228. [30] Teng Y, Mu J, Xu F, et al. Gut bacterial isoamylamine promotes age-related cognitive dysfunction by promoting microglial cell death [J]. Cell Host Microbe, 2022, 30(7): 944-960, e8. DOI: 10.1016/j.chom.2022.05.005. [31] Bairamian D, Sha S, Rolhion N, et al. Microbiota in neuroinflammation and synaptic dysfunction: a focus on alzheimer's disease [J]. Mol Neurodegener, 2022, 17(1): 19. DOI: 10.1186/s13024-022-00522-2. [32] Li D, Ke Y, Zhan R, et al. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice [J]. Aging Cell, 2018, 17(4):e12768. DOI: 10.1111/acel.12768. [33] Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases [J]. Curr Neurol Neurosci Rep, 2017, 17(12): 94. DOI: 10.1007/s11910-017-0802-6. [34] Anand N, Gorantla VR, Chidambaram SB. The role of gut dysbiosis in the pathophysiology of neuropsychiatric disorders [J]. Cells, 2022, 12(1):54. DOI: 10.3390/cells12010054. [35] Wang Z, Chen WH, Li SX, et al. Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation [J]. Mol Psychiatry, 2021, 26(11): 6277-6292. DOI: 10.1038/s41380-021-01113-1. [36] Shi H, Ge X, Ma X, et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites [J]. Microbiome, 2021, 9(1): 223. DOI: 10.1186/s40168-021-01172-0. [37] Bowers M, Liang T, Gonzalez-Bohorquez D, et al. FASN-dependent lipid metabolism links neurogenic stem/progenitor cell activity to learning and memory deficits [J]. Cell Stem Cell, 2020, 27(1): 98-109, e11. DOI: 10.1016/j.stem.2020.04.002. [38] Najmabadi H, Hu H, Garshasbi M, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders [J]. Nature, 2011, 478(7367): 57-63. DOI: 10.1038/nature10423. [39] Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS [J]. Nat Neurosci, 2015, 18(7): 965-977. DOI: 10.1038/nn.4030. [40] Lago-Baldaia I, Fernandes VM, Ackerman SD. More than mortar: glia as architects of nervous system development and disease [J]. Front Cell Dev Biol, 2020, 8:611269. DOI: 10.3389/fcell.2020.611269. [41] Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases [J]. Immune Netw, 2018, 18(4):e27. DOI: 10.4110/in.2018.18.e27. [42] Liu F, Liu T-W, Kang J. The role of NF-κB-mediated JNK pathway in cognitive impairment in a rat model of sleep apnea [J]. J Thorac Dis, 2018, 10(12): 6921-6931. DOI: 10.21037/jtd.2018.12.05. |
[1] | 邢文华 梁栋 刘洁 李梦洁 张晓敏. 线粒体动力学在糖尿病肾病中的作用及调节机制 [J]. 国际医药卫生导报, 2025, 31(2): 183-187. |
[2] | 孙虓 刘成霞 王娜 郝佳慧 储琳琳 于瑞杰. 探讨不良饮食习惯与腐胺及胃炎癌转化的关系 [J]. 国际医药卫生导报, 2025, 31(2): 221-223. |
[3] | 李香玉 郑慧娟 樊艳婷. 儿童流感嗜血杆菌感染特点及疾病进展的影响因素 [J]. 国际医药卫生导报, 2025, 31(2): 265-269. |
[4] | 姜泽军 汤胜宇 杨红玲. 炎症标志物在慢性心力衰竭临床预后评估中的作用 [J]. 国际医药卫生导报, 2025, 31(1): 42-46. |
[5] | 曾宪虎 李明 李子龙 项旭 田慧 李惠珠 马龙杰 方笑丽 陈力 唐冉. 中西医关于溃疡性结肠炎的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1415-1418. |
[6] | 高雯雯 张翔 王红 尹雁惠. 小肠细菌过度生长的治疗新进展 [J]. 国际医药卫生导报, 2024, 30(9): 1418-1421. |
[7] | 孙虓 刘成霞 王娜 郝佳慧 储琳琳 栗成钰. 探讨胃“炎癌转化”中腐胺与巨噬细胞极化的关系 [J]. 国际医药卫生导报, 2024, 30(9): 1426-1429. |
[8] | 王文斌 郭小花 郑兆华 郭曼 孙力. 帕博利珠单抗联合白蛋白紫杉醇与卡培他滨方案治疗进展期胃癌患者的疗效评估 [J]. 国际医药卫生导报, 2024, 30(9): 1430-1434. |
[9] | 李纯 杜巧婷 刘令令. 初产妇产后缺乳中西医治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1446-1449. |
[10] | 何祥琴 杨芳 丁国锋. 中成药相关肝损伤研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1450-1453. |
[11] | 杨寿娟 张海涛 崔明丽 王建 李洋 程艳丽. Wnt信号通路在急性心肌梗死中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1291-1296. |
[12] | 邹皓珍 杨佳 席哲帆 纪瑞 董华. 单细胞RNA测序技术在肾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1307-1311. |
[13] | 邵爽 郭纪伟 孟玮. m6A及m5C甲基化修饰通过促进细胞增殖与转移影响癌症的发生和发展 [J]. 国际医药卫生导报, 2024, 30(8): 1316-1320. |
[14] | 赵博 李思维 邢甜 高萍 朱宏喆 李敏. TRPV1通道在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1057-1062. |
[15] | 李孟奇 李朋 杜刚强 孙鸿朔 张锴. 长骨骨不连的发病率及手术治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1062-1066. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||