[1] Hung PH, Hsu YC, Chen TH, et al. Recent advances in diabetic kidney diseases: from kidney injury to kidney fibrosis [J]. Int J Mol Sci, 2021, 22(21): 11857. DOI: 10.3390/ijms222111857.
[2] Lin YC, Chang YH, Yang SY, et al. Update of pathophysiology and management of diabetic kidney disease [J]. J Formos Med Assoc, 2018, 117(8): 662-675. DOI: 10.1016/j.jfma.2018.02.007.
[3] Barutta F, Bellini S, Gruden G. Mechanisms of podocyte injury and implications for diabetic nephropathy [J]. Clin Sci (Lond), 2022, 136(7): 493-520. DOI: 10.1042/CS20210625.
[4] Maiti AK. Development of biomarkers and molecular therapy based on inflammatory genes in diabetic nephropathy [J]. Int J Mol Sci, 2021, 22(18): 9985. DOI: 10.3390/ijms22189985.
[5] Mishra P, Chan DC. Metabolic regulation of mitochondrial dynamics [J]. J Cell Biol, 2016, 212(4): 379-387. DOI: 10.1083/jcb.201511036.
[6] Jiang Y, Krantz S, Qin X, et al. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission - fusion dynamics and mitophagy [J]. Redox Biol, 2022, 52: 102304. DOI: 10.1016/j.redox.2022.102304.
[7] Whitley BN, Engelhart EA, Hoppins S. Mitochondrial dynamics and their potential as a therapeutic target [J]. Mitochondrion, 2019, 49: 269-283. DOI: 10.1016/j.mito.2019.06.002.
[8] Kleele T, Rey T, Winter J, et al. Distinct fission signatures predict mitochondrial degradation or biogenesis [J]. Nature, 2021, 593(7859): 435-439. DOI: 10.1038/s41586-021-03510-6.
[9] Chang X, Li Y, Cai C, et al. Mitochondrial quality control mechanisms as molecular targets in diabetic heart [J]. Metabolism, 2022, 137: 155313. DOI: 10.1016/j.metabol.2022.155313.
[10] Sun Q, Jia H, Cheng S, et al. Metformin alleviates epirubicin-induced endothelial impairment by restoring mitochondrial homeostasis [J]. Int J Mol Sci, 2022, 24(1): 343. DOI: 10.3390/ijms24010343.
[11] Sabouny R, Shutt TE. Reciprocal regulation of mitochondrial fission and fusion [J]. Trends Biochem Sci, 2020, 45(7): 564-577. DOI: 10.1016/j.tibs.2020.03.009.
[12] Gao P, Yang M, Chen X, et al. DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease [J]. Clin Sci (Lond), 2020, 134(7): 677-694. DOI: 10.1042/CS20200005.
[13] Sheng J, Li H, Dai Q, et al. DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways [J]. J Cell Physiol, 2019, 234(3): 3043-3057. DOI: 10.1002/jcp.27124.
[14] Liu S, Yuan Y, Xue Y, et al. Podocyte injury in diabetic kidney disease: a focus on mitochondrial dysfunction [J]. Front Cell Dev Biol, 2022, 10: 832887. DOI: 10.3389/fcell.2022.832887.
[15] Liu S, Li X, Wen R, et al. Increased thromboxane/prostaglandin receptors contribute to high glucose-induced podocyte injury and mitochondrial fission through ROCK1-Drp1 signaling [J]. Int J Biochem Cell Biol, 2022, 151: 106281. DOI: 10.1016/j.biocel. 2022.106281.
[16] Hongbo M, Yanjiao D, Shuo W, et al. Podocyte RNF166 deficiency alleviates diabetic nephropathy by mitigating mitochondria impairment and apoptosis via regulation of CYLD signal [J]. Biochem Biophys Res Commun, 2021, 545: 46-53. DOI: 10.1016/j.bbrc.2020.12.014.
[17] Chen Z, Ma Y, Yang Q, et al. AKAP1 mediates high glucose-induced mitochondrial fission through the phosphorylation of Drp1 in podocytes [J]. J Cell Physiol, 2020, 235(10): 7433-7448. DOI: 10.1002/jcp.29646.
[18] Wang S, Yang Y, He X, et al. Cdk5-mediated phosphorylation of Sirt1 contributes to podocyte mitochondrial dysfunction in diabetic nephropathy [J]. Antioxid Redox Signal, 2021, 34(3): 171-190. DOI: 10.1089/ars.2020.8038.
[19] Wu QR, Zheng DL, Liu PM, et al. High glucose induces Drp1-mediated mitochondrial fission via the Orai1 calcium channel to participate in diabetic cardiomyocyte hypertrophy [J]. Cell Death Dis, 2021, 12(2): 216. DOI: 10.1038/s41419-021-03502-4.
[20] Zhan M, Usman I, Yu J, et al. Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy [J]. Clin Sci (Lond), 2018, 132(12): 1297-1314. DOI: 10.1042/CS20180005.
[21] Ayanga BA, Badal SS, Wang Y, et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy [J]. J Am Soc Nephrol, 2016, 27(9): 2733-2747. DOI: 10.1681/ASN.2015101096.
[22] Cleveland KH, Brosius FC, Schnellmann RG. Regulation of mitochondrial dynamics and energetics in the diabetic renal proximal tubule by the β2-adrenergic receptor agonist formoterol [J]. Am J Physiol Renal Physiol, 2020, 319(5): F773-F779. DOI: 10.1152/ajprenal.00427.2020.
[23] Shen L, Zhang Q, Tu S, et al. SIRT3 mediates mitofusin 2 ubiquitination and degradation to suppress ischemia reperfusion-induced acute kidney injury [J]. Exp Cell Res, 2021, 408(2): 112861. DOI: 10.1016/j.yexcr.2021.112861.
[24] Ren G, Guo JH, Feng CL, et al. Berberine inhibits carcinogenesis through antagonizing the ATX-LPA-LPAR2-p38-leptin axis in a mouse hepatoma model [J]. Mol Ther Oncolytics, 2022, 26: 372-386. DOI: 10.1016/j.omto.2022.08.001.
[25] Zhao MM, Lu J, Li S, et al. Author Correction: berberine is an insulin secretagogue targeting the KCNH6 potassium channel [J]. Nat Commun, 2021, 12(1): 6342. DOI: 10.1038/s41467-021-26635-8.
[26] Hu S, Wang J, Liu E, et al. Protective effect of berberine in diabetic nephropathy: a systematic review and meta-analysis revealing the mechanism of action [J]. Pharmacol Res, 2022, 185: 106481. DOI: 10.1016/j.phrs.2022.106481.
[27] Qin X, Zhao Y, Gong J, et al. Berberine protects glomerular podocytes via Inhibiting Drp1-mediated mitochondrial fission and dysfunction [J]. Theranostics, 2019, 9(6): 1698-1713. DOI: 10.7150/thno.30640.
[28] Lee YH, Kim SH, Kang JM, et al. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy [J]. Am J Physiol Renal Physiol, 2019, 317(4): F767-F780. DOI: 10.1152/ajprenal.00565.2018.
[29] Ni Z, Tao L, Xiaohui X, et al. Polydatin impairs mitochondria fitness and ameliorates podocyte injury by suppressing Drp1 expression [J]. J Cell Physiol, 2017, 232(10): 2776-2787. DOI: 10.1002/jcp.25943.
[30] Agil A, Chayah M, Visiedo L, et al. Melatonin improves mitochondrial dynamics and function in the kidney of Zücker diabetic fatty rats [J]. J Clin Med, 2020, 9(9): 2916. DOI: 10.3390/jcm9092916.
|