[1] Fisher ER, Palekar AS, Redmond C, et al. Pathologic findings from the National Surgical Adjuvant Breast Project (protocol no. 4).Ⅵ. Invasive papillary cancer[J]. Am J Clin Pathol, 1980,73(3):313-322. DOI: 10.1093/ajcp/73.3.313.
[2] Yang YL, Liu BB, Zhang X, et al. Invasive micropapillary carcinoma of the breast: an update[J]. Arch Pathol Lab Med, 2016,140(8):799-805. DOI: 10.5858/arpa. 2016-0040-RA.
[3] Sagnak Yilmaz Z, Sarioglu S. Molecular pathology of micropapillary carcinomas: is characteristic morphology related to molecular mechanisms?[J]. Appl Immunohistochem Mol Morphol, 2023,31(5):267-277. DOI: 10.1097/PAI.0000000000001123.
[4] Guo X, Chen L, Lang R, et al. Invasive micropapillary carcinoma of the breast: association of pathologic features with lymph node metastasis[J]. Am J Clin Pathol, 2006,126(5):740-746. DOI: 10.1309/AXYY-4AJT-MNW6-FRMW.
[5] Gruel N, Fuhrmann L, Lodillinsky C, et al. LIN7A is a major determinant of cell-polarity defects in breast carcinomas[J]. Breast Cancer Res, 2016,18(1):23. DOI: 10.1186/s13058-016-0680-x.
[6] Li D, Zhong C, Cheng Y, et al. A competing nomogram to predict survival outcomes in invasive micropapillary breast cancer[J]. J Cancer, 2019,10(27):6801-6812. DOI: 10.7150/jca.27955.
[7] Dieci MV, Smutná V, Scott V, et al. Whole exome sequencing of rare aggressive breast cancer histologies[J]. Breast Cancer Res Treat, 2016,156(1):21-32. DOI: 10.1007/s10549-016-3718-y.
[8] Gruel N, Benhamo V, Bhalshankar J, et al. Polarity gene alterations in pure invasive micropapillary carcinomas of the breast[J]. Breast Cancer Res, 2014,16(3):R46. DOI: 10.1186/bcr3653.
[9] Pareja F, Ferrando L, Lee SSK, et al. The genomic landscape of metastatic histologic special types of invasive breast cancer[J]. NPJ Breast Cancer, 2020,6:53. DOI: 10.1038/s41523-020-00195-4.
[10] Ellis MJ, Ding L, Shen D, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition[J]. Nature, 2012,486(7403):353-360. DOI: 10.1038/nature11143.
[11] Shi Q, Shao K, Jia H, et al. Genomic alterations and evolution of cell clusters in metastatic invasive micropapillary carcinoma of the breast[J]. Nat Commun, 2022,13(1):111. DOI: 10.1038/s41467-021-27794-4.
[12] Kang N, Zhang Y, Guo S, et al. Genomic and transcriptomic characterization revealed the high sensitivity of targeted therapy and immunotherapy in a subset of endometrial stromal sarcoma[J]. Cancer Res Treat, 2023,55(3):978-991. DOI: 10.4143/crt.2022.1647.
[13] Dorwal P, Abou-Seif C, Ng J, et al. Clear cell sarcoma of the kidney (CCSK) with BCOR-CCNB3 fusion: a rare case report with a brief review of the literature[J]. Pediatr Dev Pathol, 2023,26(2):149-152. DOI: 10.1177/10935266221124377.
[14] Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of non-small-cell lung cancer[J]. N Engl J Med, 2017,376(22):2109-2121. DOI: 10.1056/NEJMoa1616288.
[15] Denisov EV, Skryabin NA, Vasilyev SA, et al. Relationship between morphological and cytogenetic heterogeneity in invasive micropapillary carcinoma of the breast: a report of one case[J]. J Clin Pathol, 2015,68(9):758-762. DOI: 10.1136/jclinpath-2015-203009.
[16] Li Y, Deng Y, Zhao Y, et al. Immunoglobulin superfamily 9 (IGSF9) is trans-activated by p53, inhibits breast cancer metastasis via FAK[J]. Oncogene, 2022,41(41):4658-4672. DOI: 10.1038/s41388-022-02459-8.
[17] Kanomata N, Kurebayashi J, Koike Y, et al. CD1d- and PJA2-related immune microenvironment differs between invasive breast carcinomas with and without a micropapillary feature[J]. BMC Cancer, 2019,19(1):76. DOI: 10.1186/s12885-018-5221-9.
[18] Hix LM, Shi YH, Brutkiewicz RR, et al. CD1d-expressing breast cancer cells modulate NKT cell-mediated antitumor immunity in a murine model of breast cancer metastasis[J]. PLoS One, 2011,6(6):e20702. DOI: 10.1371/journal.pone.0020702.
[19] Zhong J, Wang H, Chen W, et al. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways[J]. Cell Death Dis, 2017,8(5):e2763. DOI: 10.1038/cddis. 2017.102.
[20] Matsumura Y, Ito Y, Mezawa Y, et al. Stromal fibroblasts induce metastatic tumor cell clusters via epithelial-mesenchymal plasticity[J]. Life Sci Alliance, 2019,2(4):e201900425. DOI: 10.26508/lsa.201900425.
[21] Kramer Z, Kenessey I, Gángó A, et al. Cell polarity and cell adhesion associated gene expression differences between invasive micropapillary and no special type breast carcinomas and their prognostic significance[J]. Sci Rep, 2021,11(1):18484. DOI: 10.1038/s41598-021-97347-8.
[22] Li S, Yang C, Zhai L, et al. Deep sequencing reveals small RNA characterization of invasive micropapillary carcinomas of the breast[J]. Breast Cancer Res Treat, 2012,136(1):77-87. DOI: 10.1007/s10549-012-2166-6.
[23] Han Y, Li W, Zhi R, et al. Mir-30c regulates metastasis and polarity reversal of tumor cell clusters by targeting mtdh in invasive micropapillary carcinoma of the breast[J], 2020: 1-26.
[24] Lv J, Shi Q, Han Y, et al. Spatial transcriptomics reveals gene expression characteristics in invasive micropapillary carcinoma of the breast[J]. Cell Death Dis, 2021,12(12):1095. DOI: 10.1038/s41419-021-04380-6.
[25] Berglund E, Maaskola J, Schultz N, et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity[J]. Nat Commun, 2018,9(1):2419. DOI: 10.1038/s41467-018-04724-5.
[26] Menendez JA, Decker JP, Lupu R. In support of fatty acid synthase (FAS) as a metabolic oncogene: extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells[J]. J Cell Biochem, 2005,94(1):1-4. DOI: 10.1002/jcb.20310.
[27] Chen X, Lin Y, Jin X, et al. Integrative proteomic and phosphoproteomic profiling of invasive micropapillary breast carcinoma[J]. J Proteomics, 2022,257:104511. DOI: 10.1016/j.jprot.2022.104511.
[28] Lee JS, Wagner CB, Prelewicz S, et al. Efficacy and toxicity of midostaurin with idarubicin and cytarabine induction in <i>FLT3</I>-mutated acute myeloid leukemia[J]. Haematologica, 2023,108(12):3460-3463. DOI: 10.3324/haematol.2022.281967.
[29] Kawano T, Inokuchi J, Eto M, et al. Activators and inhibitors of protein kinase C (PKC): their applications in clinical trials[J]. Pharmaceutics, 2021,13(11):1748. DOI: 10.3390/pharmaceutics13111748.
[30] Ognjenovic NB, Bagheri M, Mohamed GA, et al. Limiting self-renewal of the basal compartment by PKA activation induces differentiation and alters the evolution of mammary tumors[J]. Dev Cell, 2020,55(5):544-557.e6. DOI: 10.1016/j.devcel.2020.10.004.
[31] Sridharan S, Basu A. S6 kinase 2 promotes breast cancer cell survival via Akt[J]. Cancer Res, 2011,71(7):2590-2599. DOI: 10.1158/0008-5472.CAN-10-3253.
[32] Zhi R, Wu K, Zhang J, et al. PRMT3 regulates the progression of invasive micropapillary carcinoma of the breast[J]. Cancer Sci, 2023,114(5):1912-1928. DOI: 10.1111/cas.15724.
[33] Wu K, Li W, Liu H, et al. Metabolome sequencing reveals that protein arginine-n-methyltransferase 1 promotes the progression of invasive micropapillary carcinoma of the breast and predicts a poor prognosis[J]. Am J Pathol, 2023,193(9):1267-1283. DOI: 10.1016/j.ajpath. 2023.05.010.
[34] Aker FV, Ekren E, Dogan M, et al. Clinicopathological features and prognosis of invasive micropapillary carcinoma compared to invasive ductal carcinoma-NOS: worse or better?[J]. J Coll Physicians Surg Pak, 2022,32(9):1196-1201. DOI: 10.29271/jcpsp.2022.09.1196.
[35] Verras GI, Tchabashvili L, Mulita F, et al. Micropapillary breast carcinoma: from molecular pathogenesis to prognosis[J]. Breast Cancer (Dove Med Press), 2022,14:41-61. DOI: 10.2147/BCTT.S346301.
[36] Eren Kupik G, Altundağ K. The clinicopathological characteristics of pure and mixed invasive micropapillary breast carcinomas: a single center experience[J]. Balkan Med J, 2022,39(4):275-281. DOI: 10.4274/balkanmedj.galenos.2022.2022-4-7.
|