[1] Ortega NM, Revilla-León M, Ortega R, et al. Comparison of surface roughness of additively manufactured implant-supported interim crowns fabricated with different print orientations[J].J Prosthodont,2024,33(2):141-148.DOI:10.1111/jopr.13645.
[2] Mazurek-Popczyk J, Nowicki A, Arkusz K, et al. Evaluation of biofilm formation on acrylic resins used to fabricate dental temporary restorations with the use of 3D printing technology[J].BMC Oral Health,2022,22(1):442.DOI:10.1186/s12903-022-02488-5.
[3] Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature[J].Dent Mater,1997,13(4):258-269.DOI:10.1016/s0109-5641(97)80038-3.
[4] Ozer NE, Sahin Z, Yikici C, et al. Bacterial adhesion to composite resins produced by additive and subtractive manufacturing[J].Odontology,2024,112(2):460-471.DOI:10.1007/s10266-023-00862-5.
[5] Kraemer Fernandez P, Unkovskiy A, Benkendorff V, et al. Surface characteristics of milled and 3D printed denture base materials following polishing and coating: an in-vitro study[J].Materials (Basel),2020,13(15):3305.DOI:10.3390/ma13153305.
[6] Choi JJE, Uy CE, Ramani RS, et al. Evaluation of surface roughness, hardness and elastic modulus of nanoparticle containing light-polymerized denture glaze materials[J].J Mech Behav Biomed Mater,2020,103:103601.DOI:10.1016/j.jmbbm.2019.103601.
[7] Sesma N, Laganá DC, Morimoto S, et al. Effect of denture surface glazing on denture plaque formation[J].Braz Dent J,2005,16(2):129-134.DOI:10.1590/s0103- 64402005000200008.
[8] 石磊. 杂化涂层对基托树脂长期浸泡力学性能和摩擦处理后抗菌性能的影响[D].长春:吉林大学,2015.
[9] Srinivasan M, Chien EC, Kalberer N, et al. Analysis of the residual monomer content in milled and 3D-printed removable CAD-CAM complete dentures: an in vitro study[J].J Dent,2022,120:104094.DOI:10.1016/j.jdent. 2022.104094.
[10] Kuroiwa A, Nomura Y, Ochiai T, et al. Antibacterial, hydrophilic effect and mechanical properties of orthodontic resin coated with UV-responsive photocatalyst[J].Materials (Basel),2018,11(6):889.DOI:10.3390/ma11060889.
[11] Takeuchi N, Yasuoka K. Review of plasma-based water treatment technologies for the decomposition of persistent organic compounds[J].Jpn J Appl Phys,2020,60:SA0801.DOI:10.35848/1347-4065/abb75d.
[12] Kamgang-Youbi G, Herry JM, Meylheuc T, et al. Microbial inactivation using plasma-activated water obtained by gliding electric discharges[J].Lett Appl Microbiol,2009,48(1):13-18.DOI:10.1111/j.1472-765X.2008.02476.x.
[13] Bălan GG, Roşca I, Ursu EL, et al. Plasma-activated water: a new and effective alternative for duodenoscope reprocessing[J].Infect Drug Resist,2018,11:727-733.DOI:10.2147/IDR.S159243.
[14] Hong Q, Dong X, Yu H, et al. The antimicrobial property of plasma activated liquids (PALs) against oral bacteria streptococcus mutans[J].Dental,2021,3:1-7.DOI:10.35702/dent.10007.
[15] Li Y, Pan J, Ye G, et al. In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash[J].Eur J Oral Sci,2017,125(6):463-470.DOI:10.1111/eos.12374.
[16] Laurita R, Barbieri D, Gherardi M, et al. Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma[J].Clin Plasma Med,2015,3:53-61.DOI:10.1016/j.cpme. 2015.10.001.
[17] Naïtali M, Kamgang-Youbi G, Herry JM, et al. Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water[J].Appl Environ Microbiol,2010,76(22):7662-7664.DOI:10.1128/AEM.01615-10.
[18] Qiu W, Zhou Y, Li Z, et al. Application of antibiotics/antimicrobial agents on dental caries[J].Biomed Res Int,2020,2020:5658212.DOI:10.1155/2020/5658212.
[19] 赵琛,华红,闫志敏. 益生菌预防和治疗口腔疾病的研究进展[J]. 口腔医学研究,2016,32(4):418-420.DOI:10.13701/j.cnki.kqyxyj.2016.04.026.
[20] Braathen G, Ingildsen V, Twetman S, et al. Presence of lactobacillus reuteri in saliva coincide with higher salivary IgA in young adults after intake of probiotic lozenges[J].Benef Microbes,2017,8(1):17-22.DOI:10.3920/BM2016.0081.
[21] Gatej SM, Marino V, Bright R, et al. Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis[J].J Clin Periodontol,2018,45(2):204-212.DOI:10.1111/jcpe.12838.
[22] Caglar E, Sandalli N, Twetman S, et al. Effect of yogurt with bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults[J].Acta Odontol Scand,2005,63(6):317-320.DOI:10.1080/00016350510020070.
[23] Kraft-Bodi E, Jørgensen MR, Keller MK, et al. Effect of probiotic bacteria on oral candida in frail elderly[J].J Dent Res,2015,94(9 Suppl):181S-186S.DOI:10.1177/0022034515595950.
[24] Suzuki N, Yoneda M, Tanabe K, et al. Lactobacillus salivarius WB21--containing tablets for the treatment of oral malodor: a double-blind, randomized, placebo-controlled crossover trial[J].Oral Surg Oral Med Oral Pathol Oral Radiol,2014,117(4):462-470.DOI:10.1016/j.oooo.2013.12.400.
[25] Invernici MM, Salvador SL, Silva PHF, et al. Effects of bifidobacterium probiotic on the treatment of chronic periodontitis: a randomized clinical trial[J].J Clin Periodontol,2018,45(10):1198-1210.DOI:10.1111/jcpe.12995.
[26] Martin-Cabezas R, Davideau JL, Tenenbaum H, et al. Clinical efficacy of probiotics as an adjunctive therapy to non-surgical periodontal treatment of chronic periodontitis: a systematic review and meta-analysis[J].J Clin Periodontol,2016,43(6):520-530.DOI:10.1111/jcpe.12545.
[27] Alshareef A, Attia A, Almalki M, et al. Effectiveness of probiotic lozenges in periodontal management of chronic periodontitis patients: clinical and immunological study[J].Eur J Dent,2020,14(2):281-287.DOI:10.1055/s-0040-1709924.
[28] Teughels W, Durukan A, Ozcelik O, et al. Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: a randomized placebo-controlled study[J].J Clin Periodontol,2013,40(11):1025-1035.DOI:10.1111/jcpe.12155.
[29] Alam H, Khatoon N, Khan MA, et al. Synthesis of selenium nanoparticles using probiotic bacteria lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria[J]. J Clust Sci,2020,31(5):1003-1011.DOI:10.1007/s10876-019-01705-6.
[30] Nithya R. Synthesis of silver nanoparticles using a probiotic microbe and its antibacterial effect against multidrug resistant bacteria[J].Afr J Biotechnol,2012,11(49):11013-11021.DOI:10.5897/AJB12.439.
[31] Wang G , Shi C , Zhao N , et al. Synthesis and characterization of ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition[J].Materials Letters,2007,61(18):3795-3797.DOI:10.1016/j.matlet.2006.12.035.
[32] Mohd Yusof H, Mohamad R, Zaidan UH, et al. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review[J].J Anim Sci Biotechnol,2019,10:57.DOI:10.1186/s40104-019-0368-z.
[33] Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes[J].RSC Adv,2019,9(23):12944-12967.DOI:10.1039/c8ra10483b.
[34] Shanthi S, Jayaseelan BD, Velusamy P, et al. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in ceriodaphnia cornuta[J].Microb Pathog,2016,93:70-77.DOI:10.1016/j.micpath.2016.01.014.
[35] 朱房勇,薛黛,许艳华,等. 3D导板引导下微种植支抗精准植入的应用研究[J]. 国际医药卫生导报,2022,28(22):3109-3112.DOI:10.3760/cma.j.issn.1007-1245. 2022.22.001.
[36] 闫佳恕,李彪,王旭东.数字化正颌外科技术在临床实践中面临的挑战[J].口腔疾病防治,2024,32(5):395-400.DOI:10.12016/j.issn.2096-1456.2024.05.010.
|