国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (10): 1585-1589.DOI: 10.3760/cma.j.issn.1007-1245.2024.10.001
• 医学新进展 • 下一篇
阻塞性睡眠呼吸暂停低通气综合征与肠道菌群关系的研究进展
卢曼路 朱继伟 丁红红 于燕 潘磊
滨州医学院附属医院呼吸与危重症医学科,滨州 256603
收稿日期:
2023-09-25
出版日期:
2024-05-15
发布日期:
2024-05-31
通讯作者:
潘磊,Email:zypl781102@163.com
基金资助:
山东省自然科学基金面上项目(ZR2021MH360);滨州市农社领域科技创新政策引导计划(2023SHFZ033)
Research progress on the relationship between obstructive sleep apnea hypopnea syndrome and gut microflora
Lu Manlu, Zhu Jiwei, Ding Honghong, Yu Yan, Pan Lei
Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2023-09-25
Online:
2024-05-15
Published:
2024-05-31
Contact:
Pan Lei, Email: zypl781102@163.com
Supported by:
Natural Science Foundation of Shandong Province (ZR2021MH360); Science and Technology Innovation Project of Binzhou Social Development (2023SHFZ033)
摘要:
阻塞性睡眠呼吸暂停低通气综合征(OSAHS)是一种在睡眠时发生间歇性缺氧和复氧损伤的呼吸疾病。OSAHS与肠道菌群密切相关,可诱发肠道菌群紊乱、肠道代谢产物改变、肠道屏障受损和全身炎症反应;反过来,肠道菌群紊乱又可促进OSAHS进展,然而相关机制尚未完全阐明。本文就OSAHS与肠道菌群的相关研究进展进行综述。
卢曼路 朱继伟 丁红红 于燕 潘磊.
阻塞性睡眠呼吸暂停低通气综合征与肠道菌群关系的研究进展 [J]. 国际医药卫生导报, 2024, 30(10): 1585-1589.
Lu Manlu, Zhu Jiwei, Ding Honghong, Yu Yan, Pan Lei.
Research progress on the relationship between obstructive sleep apnea hypopnea syndrome and gut microflora [J]. International Medicine and Health Guidance News, 2024, 30(10): 1585-1589.
[1] Wang F, Zou J, Xu H, et al. Effects of chronic intermittent hypoxia and chronic sleep fragmentation on gut microbiome, serum metabolome, liver and adipose tissue morphology[J]. Front Endocrinol (Lausanne), 2022, 13:820939. DOI: 10.3389/fendo.2022.820939. [2] Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[J]. Lancet Respir Med, 2019, 7(8):687-698. DOI: 10.1016/S2213-2600(19)30198-5. [3] Khanna S, Tosh PK. A clinician's primer on the role of the microbiome in human health and disease[J]. Mayo Clin Proc, 2014, 89(1):107-114. DOI: 10.1016/j.mayocp.2013. 10.011. [4] Salazar N, Arboleya S, Fernández-Navarro T, et al. Age-associated changes in gut microbiota and dietary components related with the immune system in adulthood and old age: a cross-sectional study[J]. Nutrients, 2019, 11(8):1765. DOI: 10.3390/nu11081765. [5] 罗娅莎,白娜,邓文喻,等.新生儿早发型细菌感染的病原学分析[J].国际医药卫生导报,2021,27(16):2569-2573. DOI:10.3760/cma.j.issn.1007-1245.2021.16.035. [6] Badran M, Mashaqi S, Gozal D. The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea[J]. Expert Opin Ther Targets, 2020, 24(12):1263-1282. DOI: 10.1080/14728222.2020.1841749. [7] Dong Y, Wang P, Lin J, et al. Characterization of fecal metabolome changes in patients with obstructive sleep apnea[J]. J Clin Sleep Med, 2022, 18(2):575-586. DOI: 10.5664/jcsm.9668. [8] Ko CY, Liu QQ, Su HZ, et al. Gut microbiota in obstructive sleep apnea-hypopnea syndrome: disease-related dysbiosis and metabolic comorbidities[J]. Clin Sci (Lond), 2019, 133(7):905-917. DOI: 10.1042/CS20180891. [9] Tang SS, Liang CH, Liu YL, et al. Intermittent hypoxia is involved in gut microbial dysbiosis in type 2 diabetes mellitus and obstructive sleep apnea-hypopnea syndrome[J]. World J Gastroenterol, 2022, 28(21):2320-2333. DOI: 10.3748/wjg.v28.i21.2320. [10] Wang F, Liu Q, Wu H, et al. The dysbiosis gut microbiota induces the alternation of metabolism and imbalance of Th17/Treg in OSA patients[J]. Arch Microbiol, 2022, 204(4):217. DOI: 10.1007/s00203-022-02825-w. [11] Rios-Covian D, González S, Nogacka AM, et al. An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: associated dietary and anthropometric factors[J]. Front Microbiol, 2020, 11:973. DOI: 10.3389/fmicb.2020.00973. [12] Allaband C, Lingaraju A, Martino C, et al. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome[J]. mSystems, 2021, 6(3):e0011621. DOI: 10.1128/mSystems.00116-21. [13] Shi H, Ge X, Ma X, et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites[J]. Microbiome, 2021, 9(1):223. DOI: 10.1186/s40168-021-01172-0. [14] Tang Q, Tan P, Ma N, et al. Physiological functions of threonine in animals: beyond nutrition metabolism[J]. Nutrients, 2021, 13(8):2592. DOI: 10.3390/nu13082592. [15] Moreno-Indias I, Torres M, Montserrat JM, et al. Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea[J]. Eur Respir J, 2015, 45(4):1055-1065. DOI: 10.1183/09031936.00184314. [16] Seethaler B, Basrai M, Neyrinck AM, et al. Biomarkers for assessment of intestinal permeability in clinical practice[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 321(1):G11-G17. DOI: 10.1152/ajpgi.00113.2021. [17] Li Q, Xu T, Zhong H, et al. Impaired intestinal barrier in patients with obstructive sleep apnea[J]. Sleep Breath, 2021, 25(2):749-756. DOI: 10.1007/s11325-020-02178-y. [18] Li Q, Xu T, Shao C, et al. Obstructive sleep apnea is related to alterations in fecal microbiome and impaired intestinal barrier function[J]. Sci Rep, 2023, 13(1):778. DOI: 10.1038/s41598-023-27784-0. [19] Al-Sadi R, Guo S, Ye D, et al. TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-α axis activation of the canonical NF-κB pathway[J]. Am J Pathol, 2016, 186(5):1151-1165. DOI: 10.1016/j.ajpath.2015.12.016. [20] Rizzatti G, Lopetuso LR, Gibiino G, et al. Proteobacteria: a common factor in human diseases[J]. Biomed Res Int, 2017, 2017:9351507. DOI: 10.1155/2017/9351507. [21] Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling[J]. Cell Mol Life Sci, 2021, 78(4):1233-1261. DOI: 10.1007/s00018-020-03656-y. [22] Neal MD, Leaphart C, Levy R, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier[J]. J Immunol, 2006, 176(5):3070-3079. DOI: 10.4049/jimmunol.176.5.3070. [23] Valentini F, Evangelisti M, Arpinelli M, et al. Gut microbiota composition in children with obstructive sleep apnoea syndrome: a pilot study[J]. Sleep Med, 2020, 76:140-147. DOI: 10.1016/j.sleep.2020.10.017. [24] Mohebali N, Ekat K, Kreikemeyer B, et al. Barrier protection and recovery effects of gut commensal bacteria on differentiated intestinal epithelial cells in vitro[J]. Nutrients, 2020, 12(8):2251. DOI: 10.3390/nu12082251. [25] Cryan JF, O'Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4):1877-2013. DOI: 10.1152/physrev.00018.2018. [26] Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression[J]. Nat Microbiol, 2019, 4(4):623-632. DOI: 10.1038/s41564-018-0337-x. [27] Olaithe M, Bucks RS, Hillman DR, et al. Cognitive deficits in obstructive sleep apnea: insights from a meta-review and comparison with deficits observed in COPD, insomnia, and sleep deprivation[J]. Sleep Med Rev, 2018, 38:39-49. DOI: 10.1016/j.smrv.2017.03.005. [28] Puech C, Badran M, Runion AR, et al. Explicit memory, anxiety and depressive like behavior in mice exposed to chronic intermittent hypoxia, sleep fragmentation, or both during the daylight period[J]. Neurobiol Sleep Circadian Rhythms, 2022, 13:100084. DOI: 10.1016/j.nbscr.2022.100084. [29] Li G, Liu J, Guo M, et al. Chronic hypoxia leads to cognitive impairment by promoting HIF-2α-mediated ceramide catabolism and alpha-synuclein hyperphosphorylation[J]. Cell Death Discov, 2022, 8(1):473. DOI: 10.1038/s41420-022-01260-6. [30] Olson CA, Iñiguez AJ, Yang GE, et al. Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia[J]. Cell Host Microbe, 2021, 29(9):1378-1392.e6. DOI: 10.1016/j.chom.2021. 07.004. [31] Liu G, Yu Q, Tan B, et al. Gut dysbiosis impairs hippocampal plasticity and behaviors by remodeling serum metabolome[J]. Gut Microbes, 2022, 14(1):2104089. DOI: 10.1080/19490976.2022.2104089. [32] Prévot T, Sibille E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders[J]. Mol Psychiatry, 2021, 26(1):151-167. DOI: 10.1038/s41380-020-0727-3. [33] Cui Y, Miao K, Niyaphorn S, et al. Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review[J]. Int J Mol Sci, 2020, 21(3):995. DOI: 10.3390/ijms21030995. [34] Otaru N, Ye K, Mujezinovic D, et al. GABA production by human intestinal Bacteroides spp.: prevalence, regulation, and role in acid stress tolerance[J]. Front Microbiol, 2021, 12:656895. DOI: 10.3389/fmicb.2021.656895. [35] Kheirandish-Gozal L, McManus CJT, Kellermann GH, et al. Urinary neurotransmitters are selectively altered in children with obstructive sleep apnea and predict cognitive morbidity[J]. Chest, 2013, 143(6):1576-1583. DOI: 10.1378/chest.12-2606. [36] Liu S, Shen J, Li Y, et al. EEG power spectral analysis of abnormal cortical activations during REM/NREM sleep in obstructive sleep apnea[J]. Front Neurol, 2021, 12:643855. DOI: 10.3389/fneur.2021.643855. [37] Szentirmai É, Millican NS, Massie AR, et al. Butyrate, a metabolite of intestinal bacteria, enhances sleep[J]. Sci Rep, 2019, 9(1):7035. DOI: 10.1038/s41598-019- 43502-1. [38] Badran M, Khalyfa A, Ericsson A, et al. Fecal microbiota transplantation from mice exposed to chronic intermittent hypoxia elicits sleep disturbances in naïve mice[J]. Exp Neurol, 2020, 334:113439. DOI: 10.1016/j.expneurol.2020.113439. [39] Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease[J]. Physiol Rev, 2019, 99(3):1325-1380. DOI: 10.1152/physrev.00010.2018. [40] Kheirandish-Gozal L, Gozal D. Obstructive sleep apnea and inflammation: proof of concept based on two illustrative cytokines[J]. Int J Mol Sci, 2019, 20(3):459. DOI: 10.3390/ijms20030459. [41] Lu D, Xu S, Dai P, et al. Gut microbiota in hypertensive patients with versus without obstructive sleep apnea[J]. J Clin Hypertens (Greenwich), 2022, 24(12):1598-1605. DOI: 10.1111/jch.14598. [42] Li X, Zhang X, Hou X, et al. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension[J]. Apoptosis, 2023, 28(3-4):432-446. DOI: 10.1007/s10495-022-01797-y. [43] Kc P, Balan KV, Tjoe SS, et al. Increased vasopressin transmission from the paraventricular nucleus to the rostral medulla augments cardiorespiratory outflow in chronic intermittent hypoxia-conditioned rats[J]. J Physiol, 2010, 588(Pt 4):725-740. DOI: 10.1113/jphysiol.2009.184580. [44] Rodriguez J, Escobar JB, Cheung EC, et al. Hypothalamic oxytocin neuron activation attenuates intermittent hypoxia-induced hypertension and cardiac dysfunction in an animal model of sleep apnea[J]. Hypertension, 2023, 80(4):882-894. DOI: 10.1161/HYPERTENSIONAHA.122. 20149. [45] de Almeida Silva M, Mowry FE, Peaden SC, et al. Kefir ameliorates hypertension via gut-brain mechanisms in spontaneously hypertensive rats[J]. J Nutr Biochem, 2020, 77:108318. DOI: 10.1016/j.jnutbio.2019.108318. [46] Zhang L, Ko CY, Zeng YM. Immunoregulatory effect of short-chain fatty acids from gut microbiota on obstructive sleep apnea-associated hypertension[J]. Nat Sci Sleep, 2022, 14:393-405. DOI: 10.2147/NSS.S354742. [47] Chao YM, Tain YL, Lee WC, et al. Protection by -biotics against hypertension programmed by maternal high fructose diet: rectification of dysregulated expression of short-chain fatty acid receptors in the hypothalamic paraventricular nucleus of adult offspring[J]. Nutrients, 2022, 14(20):4306. DOI: 10.3390/nu14204306. [48] Badran M, Khalyfa A, Ericsson AC, et al. Gut microbiota mediate vascular dysfunction in a murine model of sleep apnoea: effect of probiotics[J]. Eur Respir J, 2023, 61(1):2200002. DOI: 10.1183/13993003.00002-2022. |
[1] | 曾宪虎 李明 李子龙 项旭 田慧 李惠珠 马龙杰 方笑丽 陈力 唐冉. 中西医关于溃疡性结肠炎的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1415-1418. |
[2] | 高雯雯 张翔 王红 尹雁惠. 小肠细菌过度生长的治疗新进展 [J]. 国际医药卫生导报, 2024, 30(9): 1418-1421. |
[3] | 孙虓 刘成霞 王娜 郝佳慧 储琳琳 栗成钰. 探讨胃“炎癌转化”中腐胺与巨噬细胞极化的关系 [J]. 国际医药卫生导报, 2024, 30(9): 1426-1429. |
[4] | 王文斌 郭小花 郑兆华 郭曼 孙力. 帕博利珠单抗联合白蛋白紫杉醇与卡培他滨方案治疗进展期胃癌患者的疗效评估 [J]. 国际医药卫生导报, 2024, 30(9): 1430-1434. |
[5] | 李纯 杜巧婷 刘令令. 初产妇产后缺乳中西医治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1446-1449. |
[6] | 何祥琴 杨芳 丁国锋. 中成药相关肝损伤研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1450-1453. |
[7] | 杨寿娟 张海涛 崔明丽 王建 李洋 程艳丽. Wnt信号通路在急性心肌梗死中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1291-1296. |
[8] | 邹皓珍 杨佳 席哲帆 纪瑞 董华. 单细胞RNA测序技术在肾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1307-1311. |
[9] | 邵爽 郭纪伟 孟玮. m6A及m5C甲基化修饰通过促进细胞增殖与转移影响癌症的发生和发展 [J]. 国际医药卫生导报, 2024, 30(8): 1316-1320. |
[10] | 赵博 李思维 邢甜 高萍 朱宏喆 李敏. TRPV1通道在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1057-1062. |
[11] | 李孟奇 李朋 杜刚强 孙鸿朔 张锴. 长骨骨不连的发病率及手术治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1062-1066. |
[12] | 崔筱 刘亮. 辣椒素受体在腹泻型肠易激综合征发病中的作用 [J]. 国际医药卫生导报, 2024, 30(7): 1066-1070. |
[13] | 丁嘉雯 李娜. ESBLs阳性肺炎克雷伯菌的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1071-1074. |
[14] | 陈晓琳, 杨贞. HR-HPV载量与宫颈上皮内病变及宫颈癌相关性的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 932-935. |
[15] | 邹皓珍 杨佳 席哲帆 纪瑞 董华. 单细胞RNA测序应用于继发性肾病的研究进展 [J]. 国际医药卫生导报, 2024, 30(6): 936-940. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||