[1] Chen X, Feng L, Huang Y, et al. Mechanisms and strategies to overcome PD-1/PD-L1 blockade resistance in triple-negative breast cancer[J]. Cancers, 2022, 15(1):104. DOI:10.3390/cancers15010104.
[2] Ramos-Casals M, Brahmer JR, Callahan MK, et al. Immune-related adverse events of checkpoint inhibitors[J]. Nat Rev Dis Primers, 2020, 6(1):38. DOI:10.1038/s41572-020-0160-6.
[3] Basak U, Sarkar T, Mukherjee S, et al. Tumor-associated macrophages: an effective player of the tumor microenvironment[J]. Front Immunol, 2023, 14:1295257. DOI:10.3389/fimmu.2023.1295257.
[4] Johnson M, Dudek AZ, Sukari A, et al. ARRY-382 in combination with pembrolizumab in patients with advanced solid tumors: results from a phase 1b/2 study[J]. Clin Cancer Res, 2022, 28(12):2517-2526. DOI:10.1158/1078-0432.Ccr-21-3009.
[5] Li K, Cao L, Li C, et al. Genomic alteration profile and PD‐L1 expression among different breast cancer subtypes in Chinese population and their correlations[J]. Cancer Med, 2022, 12(5):5195-5208. DOI:10.1002/cam4.5314.
[6] Ni Y, Tsang JY, Shao Y, et al. Combining analysis of tumor-infiltrating lymphocytes (TIL) and PD-L1 refined the prognostication of breast cancer subtypes[J].Oncologist, 2022, 27(4):e313-e327. DOI:10.1093/oncolo/oyab063.
[7] Kahn AM, Golestani R, Harigopal M, et al. Intratumor spatial heterogeneity in programmed death-ligand 1 (PD-L1) protein expression in early-stage breast cancer[J]. Breast Cancer Res Treat, 2023, 201(2):289-298. DOI:10.1007/s10549-023-06977-1.
[8] Sharma R, Vedant D, Elhence PA, et al. Crosstalk between programmed death ligand 1, Ki-67 labelling Index, and tumorInfiltrating lymphocytes in invasive breast cancer and clinicopathological correlations in a tertiary care center in Western India[J]. Iran J Pathol, 2022, 17(3):314-322. DOI:10.30699/IJP.2022.539946. 2737.
[9] Saastad S A, Skjervold AH, Ytterhus B, et al. PD-L1 protein expression in breast cancer[J]. J Clin Pathol, 2023:jcp-2023-208942. DOI:10.1136/jcp-2023-208942.
[10] Adiputra PAT, Sudarsa IW, Wihandani DM, et al. Analysis of PD-L1 expression in breast cancer: a systematic review and meta-analysis in Asian Population[J]. Asian Pac J Cancer Prev, 2023,24(5):1453-1462. DOI:10.31557/apjcp.2023.24.5.1453.
[11] Wang X, Liu Y. PD-L1 expression in tumor infiltrated lymphocytes predicts survival in triple-negative breast cancer[J]. Pathol Res Pract, 2020, 216(3):152802. DOI:10.1016/j.prp.2019.152802.
[12] Lendeckel U, Venz S, Wolke C. Macrophages: shapes and functions[J]. ChemTexts, 2022, 8(2):12. DOI:10.1007/s40828-022-00163-4.
[13] Trombetta AC, Soldano S, Contini P, et al. A circulating cell population showing both M1 and M2 monocyte/macrophage surface markers characterizes systemic sclerosis patients with lung involvement[J]. Respir Res, 2018, 19(1):186. DOI:10.1186/s12931-018- 0891-z.
[14] Munir M , Kay MK, Kang MH, et al. Tumor-associated macrophages as multifaceted regulators of breast tumor growth[J]. Int J Mol Sci, 2021, 22(12):6526. DOI:10.3390/ijms22126526.
[15] Fang W, Zhou T, Shi H, et al. Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8+ T cell exclusion[J]. J Exp Clin Cancer Res, 2021, 40(1):4. DOI:10.1186/s13046-020-01786-6.
[16] Nixon BG, Kuo F, Ji L, et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer[J]. Immunity, 2022, 55(11):2044-2058.e2045. DOI:10.1016/j.immuni.2022. 10.002.
[17] Huang X, Cao J, Zu X. Tumor‐associated macrophages: an important player in breast cancer progression[J]. Thorac Cancer, 2021, 13(3):269-276. DOI:10.1111/1759-7714.14268.
[18] Jiang Z, Lim SO, Yan M, et al. TYRO3 induces anti–PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis[J]. J Clin Invest, 2021, 131(8):e139434. DOI:10.1172/jci139434.
[19] Ni C, Yang L, Xu Q, et al. CD68- and CD163-positive tumor infiltrating macrophages in non-metastatic breast cancer: a retrospective study and meta-analysis[J]. J Cancer, 2019, 10(19):4463-4472. DOI:10.7150/jca.33914.
[20] 黄瑾瑾, 杨宇石, 孙紫君,等. 乳腺癌微环境中CD163标记M2型TAM和CD31标记MVD与临床病理特征的关系[J]. 贵州医科大学学报, 2022, 47(3):279-285+307. DOI:10.19367/j.cnki.2096-8388.2022.03.006.
[21] Ramos RN, Rodriguez C, Hubert M, et al. CD163+ tumor‐associated macrophage accumulation in breast cancer patients reflects both local differentiation signals and systemic skewing of monocytes[J]. Clin Transl Immunology, 2020, 9(2):e1108. DOI:10.1002/cti2.1108.
[22] Mwafy SE, El-Guindy DM. Pathologic assessment of tumor-associated macrophages and their histologic localization in invasive breast carcinoma[J]. J Egypt Natl Canc Inst, 2020, 32(1):6. DOI:10.1186/s43046-020-0018-8.
[23] Jeong H, Hwang I, Kang SH, et al. Tumor-associated macrophages as potential prognostic biomarkers of invasive breast cancer[J]. J Breast Cancer, 2019, 22(1):38-51. DOI:10.4048/jbc.2019.22.e5
[24] Maisel BA, Yi M, Peck AR, et al. Spatial metrics of interaction between CD163-Positive macrophages and cancer cells and progression-Free survival in chemo-treated breast cancer[J]. Cancers (Basel), 2022, 14(2):308. DOI:10.3390/cancers14020308
[25] Yonemitsu K, Pan C, Fujiwara Y, et al. GM-CSF derived from the inflammatory microenvironment potentially enhanced PD-L1 expression on tumor-associated macrophages in human breast cancer[J]. Sci Rep 2022, 12(1):12007. DOI:10.1038/s41598-022-16080-y.
[26] Xia Q, Jia J, Hu C, et al. Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma[J]. Oncogene, 2021, 41(6):865-877. DOI:10.1038/s41388-021-02133-5.
[27] Ju X, Zhang H, Zhou Z, et al. Tumor-associated macrophages induce PD-L1 expression in gastric cancer cells through IL-6 and TNF-ɑ signaling[J]. Exp Cell Res, 2020, 396(2):112315. DOI:10.1016/j.yexcr.2020.112315
[28] Gómez V, Eykyn TR, Mustapha R, et al. Breast cancer–associated macrophages promote tumorigenesis by suppressing succinate dehydrogenase in tumor cells[J]. Sci Signal 2020, 13(652):eaax4585. DOI:10.1126/scisignal.aax4585
[29] Li C, Qiu S, Jin K, et al. Tumor-derived microparticles promote the progression of triple-negative breast cancer via PD-L1-associated immune suppression[J]. Cancer Lett, 2021, 523:43-56. DOI:10.1016/j.canlet. 2021.09.039.
[30] Meng Z, Zhang R, Wu X, et al. PD‑L1 mediates triple‑negative breast cancer evolution via the regulation of TAM/M2 polarization[J]. Int J Oncol, 2022, 61(6):150. DOI:10.3892/ijo.2022.5440.
[31] 王秋莹,刘庆玲,范春香,等.PD-1合CTLA-4双免疫疗法对改善晚期乳腺癌近期疗效及远期预后的影响[J].广州医药,2023,54(12):66-71.DOI:10.3969/j.issn.1000-8535.2023.12.011.
[32] Cavalcante R S, Ishikawa U, Silva E S, et al. STAT3/NF‐κB signalling disruption in M2 tumour‐associated macrophages is a major target of PLGA nanocarriers/PD‐L1 antibody immunomodulatory therapy in breast cancer[J]. Br J Pharmacol, 2021, 178(11):2284-2304. DOI:10.1111/bph.15373.
[33] Falchook GS, Peeters M, Rottey S, et al. A phase 1a/1b trial of CSF-1R inhibitor LY3022855 in combination with durvalumab or tremelimumab in patients with advanced solid tumors[J]. Invest New Drugs, 2021, 39(5):1284-1297. DOI:10.1007/s10637-021-01088-4.
|