国际医药卫生导报 ›› 2023, Vol. 29 ›› Issue (16): 2225-2229.DOI: 10.3760/cma.j.issn.1007-1245.2023.16.002
肠道菌群与代谢性疾病关系研究进展
方建锋
中国人民解放军95019部队医院全科,襄阳 441800
收稿日期:
2022-11-28
出版日期:
2023-08-15
发布日期:
2023-08-29
通讯作者:
Email: 609495858@qq.com
Relationship between intestinal floras and metabolic diseases
Fang Jianfeng
Department of General Practice, 95019 Military Hospital of China People's Liberation Army, Xiangyang 441800, China
Received:
2022-11-28
Online:
2023-08-15
Published:
2023-08-29
Contact:
Email: 609495858@qq.com
摘要:
代谢性疾病是一系列机体代谢异常疾病的总称,包括肥胖、糖尿病、非酒精性肝病等。人类肠道中有数以百亿的细菌,其产生的代谢产物可与人类宿主相互作用,从而影响着人类的健康。肠道微生物群与人类宿主的代谢健康密切相关,在异常情况下可能会导致各种常见的代谢疾病,如肥胖、2型糖尿病、非酒精性肝病、心肺代谢疾病、营养不良等。本文讨论了肠道菌群与常见的代谢性疾病的关系、致病机制,基于肠道菌群的代谢性疾病的治疗和预防方法,为代谢性疾病的治疗提供新方向。
方建锋.
肠道菌群与代谢性疾病关系研究进展 [J]. 国际医药卫生导报, 2023, 29(16): 2225-2229.
Fang Jianfeng.
Relationship between intestinal floras and metabolic diseases [J]. International Medicine and Health Guidance News, 2023, 29(16): 2225-2229.
[1] Scheithauer TP, Dallinga-Thie GM, de Vos WM, et al. Causality of small and large intestinal microbiota in weight regulation and insulin resistance[J]. Mol Metab, 2016,5(9):759-770. DOI: 10.1016/j.molmet.2016.06.002. [2] Lazar V, Ditu LM, Pircalabioru GG, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer[J]. Front Immunol, 2018,9:1830. DOI: 10.3389/fimmu.2018.01830. [3] Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components[J]. Eur J Nutr, 2018,57(1):1-24. DOI: 10.1007/s00394-017-1445-8. [4] Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018,361:k2179. DOI: 10.1136/bmj.k2179. [5] Tomas J, Mulet C, Saffarian A, et al. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine[J]. Proc Natl Acad Sci U S A, 2016,113(40):E5934-E5943. DOI: 10.1073/pnas.1612559113. [6] Thingholm LB, Rühlemann MC, Koch M, et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition[J]. Cell Host Microbe, 2019,26(2):252-264.e10. DOI: 10.1016/j.chom.2019.07.004. [7] Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad Sci U S A, 2007,104(3):979-84. DOI: 10.1073/pnas.0605374104. [8] Rabot S, Membrez M, Bruneau A, et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism[J]. FASEB J, 2010,24(12):4948-4959. DOI: 10.1096/fj.10-164921. [9] Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice[J]. ISME J, 2013,7(4):880-884. DOI: 10.1038/ismej.2012.153. [10] Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006,444(7122):1027-1031. DOI: 10.1038/nature05414. [11] Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science, 2013,341(6150):1241214. DOI: 10.1126/science.1241214. [12] Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019,157:107843. DOI: 10.1016/j.diabres.2019.107843. [13] Morigny P, Houssier M, Mouisel E, et al. Adipocyte lipolysis and insulin resistance[J]. Biochimie, 2016,125:259-66. DOI: 10.1016/j.biochi.2015.10.024. [14] Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control[J]. Nature, 2013,498(7452):99-103. DOI: 10.1038/nature12198. [15] Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013,500(7464):541-546. DOI: 10.1038/nature12506. [16] Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012,490(7418):55-60. DOI: 10.1038/nature11450. [17] Karlsson CL, Onnerfält J, Xu J, et al. The microbiota of the gut in preschool children with normal and excessive body weight[J]. Obesity (Silver Spring), 2012,20(11):2257-2261. DOI: 10.1038/oby.2012.110. [18] Yuan J, Chen C, Cui J, et al. Fatty liver disease caused by high-alcohol-producing klebsiella pneumoniae[J]. Cell Metab, 2019,30(4):675-688.e7. DOI: 10.1016/j.cmet.2019.08.018. [19] Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH[J]. Hepatology, 2013,57(2):601-609. DOI: 10.1002/hep.26093. [20] Gomes JMG, Costa JA, Alfenas RCG. Metabolic endotoxemia and diabetes mellitus: a systematic review[J]. Metabolism, 2017,68:133-144. DOI: 10.1016/j.metabol.2016.12.009. [21] Matheus VA, Monteiro L, Oliveira RB, et al. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice[J]. Exp Biol Med (Maywood), 2017,242(12):1214-1226. DOI: 10.1177/1535370217708188. [22] Song MJ, Kim KH, Yoon JM, et al. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes[J]. Biochem Biophys Res Commun, 2006,346(3):739-745. DOI: 10.1016/j.bbrc.2006.05.170. [23] Zozulinska D, Wierusz-Wysocka B.Type 2 diabetes mellitus as inflammatory disease[J].Diabetes Research and Clinical Practice,2006,74(2):S12-S16.DOI:10.1016/j.diabres.2006.06.007. [24] Roohi A, Tabrizi M, Abbasi F, et al. Serum IL-17, IL-23, and TGF-β levels in type 1 and type 2 diabetic patients and age-matched healthy controls[J]. Biomed Res Int, 2014,2014:718946. DOI: 10.1155/2014/718946. [25] Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus[J]. Biomed Pharmacother, 2018,101:287-292. DOI: 10.1016/j.biopha.2018.02.103. [26] von Scholten BJ, Reinhard H, Hansen TW, et al. Markers of inflammation and endothelial dysfunction are associated with incident cardiovascular disease, all-cause mortality, and progression of coronary calcification in type 2 diabetic patients with microalbuminuria[J]. J Diabetes Complications, 2016,30(2):248-255. DOI: 10.1016/j.jdiacomp.2015.11.005. [27] Roy CC, Kien CL, Bouthillier L, et al. Short-chain fatty acids: ready for prime time?[J]. Nutr Clin Pract, 2006,21(4):351-366. DOI: 10.1177/0115426506021004351. [28] Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production[J]. Proc Nutr Soc, 2003,62(1):67-72. DOI: 10.1079/PNS2002207. [29] Zeng H, Chi H. Metabolic control of regulatory T cell development and function[J]. Trends Immunol, 2015,36(1):3-12. DOI: 10.1016/j.it.2014.08.003. [30] Lin HV, Frassetto A, Kowalik EJ, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J]. PLoS One, 2012,7(4):e35240. DOI: 10.1371/journal.pone.0035240. [31] Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009,58(7):1509-1517. DOI: 10.2337/db08-1637. [32] Cani PD. Gut cell metabolism shapes the microbiome[J]. Science, 2017,357(6351):548-549. DOI: 10.1126/science.aao2202. [33] Cani PD. Human gut microbiome: hopes, threats and promises[J]. Gut, 2018,67(9):1716-1725. DOI: 10.1136/gutjnl-2018-316723. [34] Vítek L, Haluzík M. The role of bile acids in metabolic regulation[J]. J Endocrinol, 2016,228(3):R85-96. DOI: 10.1530/JOE-15-0469. [35] Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man[J]. N Engl J Med, 1977,296(24):1365-1371. DOI: 10.1056/NEJM197706162962401. [36] Abrams JJ, Ginsberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus[J]. Diabetes, 1982,31(10):903-910. DOI: 10.2337/diab.31.10.903. [37] 梁贝贝,凌宏威,周冬梅,等.血清总胆汁酸水平与2型糖尿病的关系[J].现代医学,2019,47(3):250-254.DOI:10.3969/j.issn.1671-7562.2019.03.002. [38] Mantovani A, Dalbeni A, Peserico D, et al. Plasma bile acid profile in patients with and without type 2 diabetes[J]. Metabolites, 2021,11(7):453. DOI: 10.3390/metabo11070453. [39] Herrema H, Meissner M, van Dijk TH, et al. Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor- and liver X receptor alpha-controlled metabolic pathways in mice[J]. Hepatology, 2010,51(3):806-816. DOI: 10.1002/hep.23408. [40] Park S, Bae JH. Probiotics for weight loss: a systematic review and meta-analysis[J]. Nutr Res, 2015,35(7):566-575. DOI: 10.1016/j.nutres.2015.05.008. [41] Mátis G, Kulcsár A, Turowski V, et al. Effects of oral butyrate application on insulin signaling in various tissues of chickens[J]. Domest Anim Endocrinol, 2015,50:26-31. DOI: 10.1016/j.domaniend.2014.07.004. [42] Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, et al. Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus[J]. J Dairy Sci, 2011,94(7):3288-3294. DOI: 10.3168/jds.2010-4128. [43] Naito E, Yoshida Y, Makino K, et al. Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice[J]. J Appl Microbiol, 2011,110(3):650-657. DOI: 10.1111/j.1365-2672.2010.04922.x. [44] Roller M, Rechkemmer G, Watzl B. Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats[J]. J Nutr, 2004,134(1):153-156. DOI: 10.1093/jn/134.1.153. [45] Rinott E, Youngster I, Yaskolka Meir A, et al. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain[J]. Gastroenterology, 2021,160(1):158-173.e10. DOI: 10.1053/j.gastro.2020.08.041. [46] Alang N, Kelly CR. Weight gain after fecal microbiota transplantation[J]. Open Forum Infect Dis, 2015,2(1):ofv004. DOI: 10.1093/ofid/ofv004. [47] Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition[J]. Cell Metab, 2017,26(4):611-619.e6. DOI: 10.1016/j.cmet.2017.09.008. [48] Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome[J]. Gastroenterology, 2012,143(4):913-6.e7. DOI: 10.1053/j.gastro.2012.06.031. [49] Witjes JJ, Smits LP, Pekmez CT, et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis[J]. Hepatol Commun, 2020,4(11):1578-1590. DOI: 10.1002/hep4.1601. [50] Hou YY, Ojo O, Wang LL, et al. A Randomized controlled trial to compare the effect of peanuts and almonds on the cardio-metabolic and inflammatory parameters in patients with type 2 diabetes mellitus[J]. Nutrients, 2018,10(11):1565. DOI: 10.3390/nu10111565. [51] Fernández-Cao JC, Warthon-Medina M, H Moran V, et al. Zinc intake and status and risk of type 2 diabetes mellitus: a systematic review and meta-analysis[J]. Nutrients, 2019,11(5):1027. DOI: 10.3390/nu11051027. [52] Song S, Lee JE. Dietary patterns related to triglyceride and high-density lipoprotein cholesterol and the incidence of type 2 diabetes in Korean men and women[J]. Nutrients, 2018,11(1):8. DOI: 10.3390/nu11010008. |
[1] | 解胜华 吴雪梅 张玉杰. 银屑病合并代谢性疾病发病机制的研究进展 [J]. 国际医药卫生导报, 2023, 29(9): 1189-1192. |
[2] | 刘玉姣 王超 刘菲. 中西医结合治疗产后盆底肌筋膜疼痛的研究进展 [J]. 国际医药卫生导报, 2023, 29(9): 1204-1207. |
[3] | 王泽川 黄月琴. 急性髓系白血病靶向药物治疗新进展 [J]. 国际医药卫生导报, 2023, 29(8): 1045-1048. |
[4] | 徐仕杰 罗泽斌 陈晓东. CT肺动脉成像在肺栓塞诊治中的应用进展 [J]. 国际医药卫生导报, 2023, 29(8): 1053-1056. |
[5] | 张衡 潘广涛 殷鸣 张平 尹霞. 自体脂肪移植在整形外科中的研究进展 [J]. 国际医药卫生导报, 2023, 29(7): 889-892. |
[6] | 吴雪梅 张玉杰 解胜华. 银屑病与心血管共病关系的研究进展 [J]. 国际医药卫生导报, 2023, 29(4): 453-456. |
[7] | 杨丽娜 王玉 夏铂. 烙灸临床应用研究进展 [J]. 国际医药卫生导报, 2023, 29(2): 154-. |
[8] | 牛欢 丛晨阳. 房水炎性因子在糖尿病性黄斑水肿发病机制中的研究进展 [J]. 国际医药卫生导报, 2023, 29(17): 2369-2372. |
[9] | 罗梅娟 张又祥 欧巧群 王丽娜. 肠道噬菌体与机体健康的研究进展及临床应用 [J]. 国际医药卫生导报, 2023, 29(17): 2373-2377. |
[10] | 周欣宇 张婷 贾秀红. m6A去甲基化酶在白血病中的研究进展 [J]. 国际医药卫生导报, 2023, 29(17): 2378-2380. |
[11] | 张村女 万宁 赵丹. 太极拳锻炼联合护理干预对老年2型糖尿病患者血糖水平及生活质量的影响 [J]. 国际医药卫生导报, 2023, 29(17): 2489-2493. |
[12] | 张翠 刘振 刘婧扬 石新烨 刘志强 孙经武. NLRP3炎性小体与糖尿病心肌病的研究进展 [J]. 国际医药卫生导报, 2023, 29(16): 2221-2225. |
[13] | 龙玲美 刘伟旺 伍媛. 骨质疏松及骨折风险危险因素和评估工具的应用 [J]. 国际医药卫生导报, 2023, 29(16): 2230-2234. |
[14] | 徐希 李向阳 张波 向远刚 阳攀 张振声 许传亮. 预防膀胱癌患者发生静脉血栓栓塞的研究进展 [J]. 国际医药卫生导报, 2023, 29(15): 2073-2076. |
[15] | 赵嘉昊 商雪 祝慧 李昕玺 徐会圃. PI3K/AKT信号通路在心血管疾病中的研究进展 [J]. 国际医药卫生导报, 2023, 29(15): 2077-2080. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||