[1] Holekamp NM. Overview of diabetic macular edema[J]. Am J Manag Care, 2016, 22(10 Suppl):s284-s291.
[2] Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3):556-564. DOI: 10.2337/dc11-1909.
[3] Antonetti DA, Lieth E, Barber AJ, et al. Molecular mechanisms of vascular permeability in diabetic retinopathy[J]. Semin Ophthalmol, 1999, 14(4):240-248. DOI: 10.3109/08820539909069543.
[4] Writing Committee for the Diabetic Retinopathy Clinical Research Network; Gross JG, Glassman AR, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA, 2015, 314(20):2137-2146. DOI: 10.1001/jama.2015.15217.
[5] Tan GS, Cheung N, Simó R, et al. Diabetic macular oedema[J]. Lancet Diabetes Endocrinol, 2017, 5(2):143-155. DOI: 10.1016/S2213-8587(16)30052-3.
[6] Udaondo P, Hernández C, Briansó-Llort L, et al. Usefulness of liquid biopsy biomarkers from aqueous humor in predicting anti-VEGF response in diabetic macular edema: results of a pilot study[J]. J Clin Med, 2019, 8(11):1841. DOI: 10.3390/jcm8111841.
[7] Capitão M, Soares R. Angiogenesis and inflammation crosstalk in diabetic retinopathy[J]. J Cell Biochem, 2016, 117(11):2443-2453. DOI: 10.1002/jcb.25575.
[8] Behl Y, Krothapalli P, Desta T, et al. Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy[J]. Am J Pathol, 2008, 172(5):1411-1418. DOI: 10.2353/ajpath. 2008.071070.
[9] Hassan I, Luo Q, Majumdar S, et al. Tumor necrosis factor alpha (TNF-α) disrupts Kir4.1 channel expression resulting in Müller cell dysfunction in the retina[J]. Invest Ophthalmol Vis Sci, 2017, 58(5):2473-2482. DOI: 10.1167/iovs.16-20712.
[10] Yao Y, Li R, Du J, et al. Tumor necrosis factor-α and diabetic retinopathy: review and meta-analysis[J]. Clin Chim Acta, 2018, 485:210-217. DOI: 10.1016/j.cca.2018. 06.028.
[11] Xu J, Liao YF, Zhou WP, et al. The MCP-1 gene A-2518G polymorphism confers an increased risk of vascular complications in type 2 diabetes mellitus patients[J]. Genet Test Mol Biomarkers, 2015, 19(8):411-417. DOI: 10.1089/gtmb.2014.0325.
[12] Deshmane SL, Kremlev S, Amini S, et al. Monocyte chemoattractant protein-1 (MCP-1): an overview[J]. J Interferon Cytokine Res, 2009, 29(6):313-326. DOI: 10.1089/jir.2008.0027.
[13] Forbes JM, Cooper ME. Mechanisms of diabetic complications[J]. Physiol Rev, 2013, 93(1):137-188. DOI: 10.1152/physrev.00045.2011.
[14] Jiang Z, Hennein L, Xu Y, et al. Elevated serum monocyte chemoattractant protein-1 levels and its genetic polymorphism is associated with diabetic retinopathy in Chinese patients with type 2 diabetes[J]. Diabet Med, 2016, 33(1):84-90. DOI: 10.1111/dme.12804.
[15] Kaštelan S, Orešković I, Bišćan F, et al. Inflammatory and angiogenic biomarkers in diabetic retinopathy[J]. Biochem Med (Zagreb), 2020, 30(3):030502. DOI: 10.11613/BM.2020.030502.
[16] Adki KM, Kulkarni YA. Potential biomarkers in diabetic retinopathy[J]. Curr Diabetes Rev, 2020, 16(9):971-983. DOI: 10.2174/1573399816666200217092022.
[17] Khuu LA, Tayyari F, Sivak JM, et al. Aqueous humour concentrations of TGF-β, PLGF and FGF-1 and total retinal blood flow in patients with early non-proliferative diabetic retinopathy[J]. Acta Ophthalmol, 2017, 95(3):e206-e211. DOI: 10.1111/aos.13230.
[18] Kishimoto T. The biology of interleukin-6[J]. Blood, 1989, 74(1):1-10.
[19] Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration[J]. Int J Mol Sci, 2018, 19(1):110. DOI: 10.3390/ijms19010110.
[20] Zahir-Jouzdani F, Atyabi F, Mojtabavi N. Interleukin-6 participation in pathology of ocular diseases[J]. Pathophysiology, 2017, 24(3):123-131. DOI: 10.1016/j.pathophys.2017.05.005.
[21] Valle ML, Dworshak J, Sharma A, et al. Inhibition of interleukin-6 trans-signaling prevents inflammation and endothelial barrier disruption in retinal endothelial cells[J]. Exp Eye Res, 2019, 178:27-36. DOI: 10.1016/j.exer.2018.09.009.
[22] Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: Beyond the surface[J]. Prog Retin Eye Res, 2018, 63:20-68. DOI: 10.1016/j.preteyeres.2017. 10.006.
[23] Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions[J]. Vision Res, 2017, 139:15-22. DOI: 10.1016/j.visres.2017.03.009.
[24] Chalam KV, Grover S, Sambhav K, et al. Aqueous interleukin-6 levels are superior to vascular endothelial growth factor in predicting therapeutic response to bevacizumab in age-related macular degeneration[J]. J Ophthalmol, 2014, 2014:502174. DOI: 10.1155/2014/502174.
[25] Xie K. Interleukin-8 and human cancer biology[J]. Cytokine Growth Factor Rev, 2001, 12(4):375-391. DOI: 10.1016/s1359-6101(01)00016-8.
[26] Jonas JB, Jonas RA, Neumaier M, et al. Cytokine concentration in aqueous humor of eyes with diabetic macular edema[J]. Retina, 2012, 32(10):2150-2157. DOI: 10.1097/IAE.0b013e3182576d07.
[27] Lee WJ, Kang MH, Seong M, et al. Comparison of aqueous concentrations of angiogenic and inflammatory cytokines in diabetic macular oedema and macular oedema due to branch retinal vein occlusion[J]. Br J Ophthalmol, 2012, 96(11):1426-1430. DOI: 10.1136/bjophthalmol-2012- 301913.
[28] Kwon JW, Jee D. Aqueous humor cytokine levels in patients with diabetic macular edema refractory to anti-VEGF treatment[J]. PLoS One, 2018, 13(9):e0203408. DOI: 10.1371/journal.pone.0203408.
[29] Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans[J]. Semin Immunol, 2013, 25(6):469-484. DOI: 10.1016/j.smim.2013.10.008.
[30] Carmi Y, Dotan S, Rider P, et al. The role of IL-1β in the early tumor cell-induced angiogenic response[J]. J Immunol, 2013, 190(7):3500-3509. DOI: 10.4049/jimmunol.1202769.
[31] Lim SW, Bandala-Sanchez E, Kolic M, et al. The influence of intravitreal ranibizumab on inflammation-associated cytokine concentrations in eyes with diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2018, 59(13):5382-5390. DOI: 10.1167/iovs.17-23325.
[32] Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy[J]. Br J Ophthalmol, 2004, 88(10):1343-1347. DOI: 10.1136/bjo.2003.038133.
[33] Loetscher M, Gerber B, Loetscher P, et al. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes[J]. J Exp Med, 1996, 184(3):963-969. DOI: 10.1084/jem.184.3.963.
[34] Dong L, Bai J, Jiang X, et al. The gene polymorphisms of IL-8(-251T/A) and IP-10(-1596C/T) are associated with susceptibility and progression of type 2 diabetic retinopathy in northern Chinese population[J]. Eye (Lond), 2017, 31(4):601-607. DOI: 10.1038/eye.2016.287.
[35] Joy SS, Siddiqui K. Molecular and pathophysiological mechanisms of diabetic retinopathy in relation to adhesion molecules[J]. Curr Diabetes Rev, 2019, 15(5):363-371. DOI: 10.2174/1573399814666181017103844.
[36] Hu TT, Vanhove M, Porcu M, et al. The potent small molecule integrin antagonist THR-687 is a promising next-generation therapy for retinal vascular disorders[J]. Exp Eye Res, 2019, 180:43-52. DOI: 10.1016/j.exer.2018.11.022.
[37] Jawhara S, Pluskota E, Cao W, et al. Distinct effects of integrins αXβ2 and αMβ2 on leukocyte subpopulations during inflammation and antimicrobial responses[J]. Infect Immun, 2016, 85(1):e00644-16. DOI: 10.1128/IAI.00644-16.
|