[1] Boudina S, Abel ED. Diabetic cardiomyopathy revisited[J]. Circulation, 2007, 115(25):3213-3223. DOI: 10.1161/CIRCULATIONAHA.
[2] Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis[J]. Am J Cardiol, 1972, 30(6):595-602. DOI: 10.1016/0002-9149(72)90595-4.
[3] Murtaza G, Virk HUH, Khalid M, et al. Diabetic cardiomyopathy - a comprehensive updated review[J]. Prog Cardiovasc Dis, 2019,62(4):315-326. DOI: 10.1016/j.pcad.2019.03.003.
[4] Ahmed U, Khaliq S, Ahmad HU, et al. Pathogenesis of diabetic cardiomyopathy and role of miRNA[J]. Crit Rev Eukaryot Gene Expr, 2021,31(1):79-92. DOI: 10.1615/CritRevEukaryotGeneExpr.2021037533.
[5] Williams LJ, Nye BG, Wende AR. Diabetes-related cardiac dysfunction[J]. Endocrinol Metab (Seoul), 2017,32(2):171-179. DOI: 10.3803/EnM.2017.32.2.171.
[6] Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions[J]. Cell, 2016,165(4):792-800. DOI: 10.1016/j.cell.2016.03.046.
[7] Zahid A, Li B, Kombe AJK, et al. Pharmacological Inhibitors of the NLRP3 Inflammasome[J]. Front Immunol, 2019,10:2538. DOI: 10.3389/fimmu. 2019.02538.
[8] Man SM, Kanneganti TD. Regulation of inflammasome activation[J]. Immunol Rev, 2015,265(1):6-21. DOI: 10.1111/imr.12296.
[9] Zhen Y, Zhang H. NLRP3 inflammasome and inflammatory bowel disease[J]. Front Immunol, 2019,10:276. DOI: 10.3389/fimmu.2019.00276.
[10] Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases[J]. Biomed Pharmacother, 2020, 130:110542. DOI: 10.1016/j.biopha.2020.110542.
[11] Biasizzo M, Kopitar-Jerala N. Interplay between NLRP3 inflammasome and autophagy[J]. Front Immunol, 2020,11:591803. DOI: 10.3389/fimmu.2020.591803.
[12] Mezzaroma E, Abbate A, Toldo S. NLRP3 inflammasome inhibitors in cardiovascular diseases[J]. Molecules, 2021,26(4):976. DOI: 10.3390/molecules26040976.
[13] Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression[J]. J Immunol, 2009,183(2):787-791. DOI: 10.4049/jimmunol.0901363.
[14] Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly[J]. Immunol Rev, 2015,265(1):35-52. DOI: 10.1111/imr.12286.
[15] Zhao C, Zhao W. NLRP3 Inflammasome-a key player in antiviral responses[J]. Front Immunol, 2020,11:211. DOI: 10.3389/fimmu.2020.00211.
[16] Luo B, Li B, Wang W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model[J]. PLoS One, 2014,9(8):e104771. DOI: 10.1371/journal.pone.0104771.
[17] Zeng C, Wang R, Tan H. Role of pyroptosis in cardiovascular diseases and its therapeutic implications[J]. Int J Biol Sci, 2019,15(7):1345-1357. DOI: 10.7150/ijbs.33568.
[18] Qiu Z, He Y, Ming H, et al. Lipopolysaccharide (LPS) aggravates high glucose-and hypoxia/reoxygenation- induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes[J]. J Diabetes Res, 2019,2019:8151836. DOI: 10.1155/2019/8151836.
[19] Elmadbouh I, Singla DK. BMP-7 attenuates inflammation- induced pyroptosis and improves cardiac repair in diabetic cardiomyopathy[J]. Cells, 2021,10(10):2640. DOI: 10.3390/cells10102640.
[20] Xie Y, Huang Y, Ling X, et al. Chemerin/CMKLR1 axis promotes inflammation and pyroptosis by activating NLRP3 inflammasome in diabetic cardiomyopathy rat[J]. Front Physiol, 2020,11:381. DOI: 10.3389/fphys. 2020.00381.
[21] Kang LL, Zhang DM, Ma CH, et al. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation[J]. Sci Rep, 2016,6:27460. DOI: 10.1038/srep27460.
[22] Bracey NA, Gershkovich B, Chun J, et al. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome[J]. J Biol Chem, 2014,289(28):19571-19584. DOI: 10.1074/jbc.M114.550624.
[23] Zhang X, Pan L, Yang K, et al. H3 Relaxin Protects Against Myocardial Injury in Experimental Diabetic Cardiomyopathy by Inhibiting Myocardial Apoptosis, Fibrosis and Inflammation[J]. Cell Physiol Biochem, 2017,43(4):1311-1324. DOI: 10.1159/000481843.
[24] Sivasankar D, George M, Sriram DK. Novel approaches in the treatment of diabetic cardiomyopathy[J]. Biomed Pharmacother, 2018,106:1039-1045. DOI: 10.1016/j.biopha.2018.07.051.
[25] Yang F, Qin Y, Wang Y, et al. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy[J]. Int J Biol Sci, 2019,15(5):1010-1019. DOI: 10.7150/ijbs.29680.
[26] Ye Y, Bajaj M, Yang HC, et al. SGLT-2 Inhibition with Dapagliflozin reduces the activation of the Nlrp3/ASC Inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further Augmentation of the effects with saxagliptin, a DPP4 inhibitor[J]. Cardiovasc Drugs Ther, 2017,31(2):119-132. DOI: 10.1007/s10557-017-6725-2.
[27] Xue M, Li T, Wang Y, et al. Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice[J]. Clin Sci (Lond), 2019,133(15):1705-1720. DOI: 10.1042/CS20190585.
[28] Che H, Wang Y, Li H, et al. Melatonin alleviates cardiac fibrosis via inhibiting lncRNA MALAT1/miR-141- mediated NLRP3 inflammasome and TGF-β1/Smads signaling in diabetic cardiomyopathy[J]. FASEB J, 2020,34(4):5282-5298. DOI: 10.1096/fj.201902692R.
[29] Luo B, Li B, Wang W, et al. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model[J]. Cardiovasc Drugs Ther, 2014,28(1):33-43. DOI: 10.1007/s10557-013-6498-1.
[30] Zhang H, Chen X, Zong B, et al. Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation[J]. J Cell Mol Med, 2018,22(9):4437-4448. DOI: 10.1111/jcmm.13743.
[31] Yan M, Li L, Wang Q, et al. The Chinese herbal medicine Fufang Zhenzhu Tiaozhi protects against diabetic cardiomyopathy by alleviating cardiac lipotoxicity- induced oxidative stress and NLRP3-dependent inflammasome activation[J]. Biomed Pharmacother, 2022,148:112709. DOI: 10.1016/j.biopha. 2022.112709.
[32] Jiang C, Li D, Chen L, et al. Quercetin ameliorated cardiac injury via reducing inflammatory actions and the glycerophospholipid metabolism dysregulation in a diabetic cardiomyopathy mouse model[J]. Food Funct, 2022,13(14):7847-7856. DOI: 10.1039/d2fo00912a.
[33] Wen Y, Geng L, Zhou L, et al. Betulin alleviates on myocardial inflammation in diabetes mice via regulating Siti1/NLRP3/NF-κB pathway[J]. Int Immunopharmacol, 2020,85:106653. DOI: 10.1016/j.intimp.2020.106653.
|