[1] 邓国防. «结核病与糖尿病共病的治疗管理专家共识»解读[J]. 中国防痨杂志,2021,43(4):318-321. DOI:10.3969/j.issn.1000-6621.2021.04.004.
[2] 龚兰,许婉华,谢贝,等. 肺结核患者治疗过程中血清IFN-γ表达水平变化分析[J]. 国际医药卫生导报,2023,29(10):1343-1348. DOI:10.3760/cma.j.issn.1007-1245.2023. 10.003.
[3] Noubiap JJ, Nansseu JR, Nyaga UF, et al. Global prevalence of diabetes in active tuberculosis: a systematic review and meta-analysis of data from 2·3 million patients with tuberculosis[J]. Lancet Glob Health, 2019, 7(4): e448-e460. DOI: 10.1016/S2214-109X(18)30487-X.
[4] Restrepo BI. Diabetes and tuberculosis[J]. Microbiol Spectr, 2016, 4(6):10.1128/microbiolspec.TNMI7-0023-2016. DOI: 10.1128/microbiolspec.TNMI7- 0023-2016.
[5] Boadu AA, Yeboah-Manu M, Osei-Wusu S, et al. Tuberculosis and diabetes mellitus: the complexity of the comorbid interactions[J]. Int J Infect Dis, 2024, 146:107140. DOI: 10.1016/j.ijid.2024.107140.
[6] Godfrey DI, Koay HF, McCluskey J, et al. The biology and functional importance of MAIT cells[J]. Nat Immunol, 2019, 20(9): 1110-1128. DOI: 10.1038/s41590-019- 0444-8.
[7] Provine NM, Klenerman P. MAIT cells in health and disease[J]. Annu Rev Immunol, 2020, 38: 203-228. DOI: 10.1146/annurev-immunol-080719-015428.
[8] 曹志红,程小星. 黏膜相关恒定T细胞在抗结核分枝杆菌免疫中的作用[J]. 中华结核和呼吸杂志,2023,46(5):511-516. DOI:10.3760/cma.j.cn112147-20230307-00117.
[9] 国家感染性疾病临床医学研究中心,深圳市第三人民医院,国家代谢性疾病临床医学研究中心,等. 结核病与糖尿病共病的治疗管理专家共识[J]. 中国防痨杂志,2021,43(1):12-22. DOI:10.3969/j.issn.1000-6621.2021.01.004.
[10] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)(上)[J]. 中国实用内科杂志,2021,41(8):668-695. DOI:10.19538/j.nk2021080106.
[11] Li X, Wang M, Ming S, et al. TARM-1 is critical for macrophage activation and th1 response in mycobacterium tuberculosis infection[J]. J Immunol, 2021, 207(1): 234-243. DOI: 10.4049/jimmunol.2001037.
[12] Ming S, Zhang M, Liang Z, et al. OX40L/OX40 signal promotes IL-9 production by mucosal MAIT cells during helicobacter pylori infection[J]. Front Immunol, 2021, 12:626017. DOI: 10.3389/fimmu.2021.626017.
[13] 张艺. 肺结核合并糖尿病临床特点分析[J]. 国际检验医学杂志,2016,37(12):1667-1669. DOI:10.3969/j.issn.1673- 4130.2016.12.027.
[14] 李烨,叶晓光,李进. 肺结核合并2型糖尿病56例临床分析[J]. 国际医药卫生导报,2010,16(16):1969-1971. DOI:10.3760/cma.j.issn.1007-1245.2010.16.013.
[15] Kumar Nathella P, Babu S. Influence of diabetes mellitus on immunity to human tuberculosis[J]. Immunology, 2017, 152(1): 13-24. DOI: 10.1111/imm.12762.
[16] Chengalroyen MD. Current perspectives and challenges of MAIT cell-directed therapy for tuberculosis infection[J]. Pathogens, 2023, 12(11): 1343. DOI: 10.3390/pathogens12111343.
[17] Corbett AJ, Eckle SB, Birkinshaw RW, et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways[J]. Nature, 2014, 509(7500): 361-365. DOI: 10.1038/nature13160.
[18] Bucsan AN, Rout N, Foreman TW, et al. Mucosal-activated invariant T cells do not exhibit significant lung recruitment and proliferation profiles in macaques in response to infection with mycobacterium tuberculosis CDC1551[J]. Tuberculosis (Edinb), 2019, 116S: S11-S18. DOI: 10.1016/j.tube.2019.04.006.
[19] Sakai S, Lora NE, Kauffman KD, et al. Functional inactivation of pulmonary MAIT cells following 5-OP-RU treatment of non-human primates[J]. Mucosal Immunol, 2021, 14(5): 1055-1066. DOI: 10.1038/s41385-021- 00425-3.
[20] Le Bourhis L, Martin E, Péguillet I, et al. Antimicrobial activity of mucosal-associated invariant T cells[J]. Nat Immunol, 2010, 11(8): 701-708. DOI: 10.1038/ni.1890.
[21] Jiang J, Wang X, An H, et al. Mucosal-associated invariant T-cell function is modulated by programmed death-1 signaling in patients with active tuberculosis[J]. Am J Respir Crit Care Med, 2014, 190(3):329-339. DOI: 10.1164/rccm.201401-0106OC.
[22] Jiang J, Cao Z, Qu J, et al. PD-1-expressing MAIT cells from patients with tuberculosis exhibit elevated production of CXCL13[J]. Scand J Immunol, 2020, 91(4): e12858. DOI: 10.1111/sji.12858.
[23] Jiang J, Yang B, An H, et al. Mucosal-associated invariant T cells from patients with tuberculosis exhibit impaired immune response[J]. J Infect, 2016, 72(3): 338-352. DOI: 10.1016/j.jinf.2015.11.010.
[24] Rouxel O, Da Silva J, Beaudoin L, et al. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes[J]. Nat Immunol, 2017, 18(12):1321-1331. DOI: 10.1038/ni.3854.
[25] Endesfelder D, zu Castell W, Ardissone A, et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity[J]. Diabetes, 2014, 63(6): 2006-2014. DOI: 10.2337/db13-1676.
[26] Zhang M, Ming S, Gong S, et al. Activation-induced cell death of mucosal-associated invariant T cells is amplified by OX40 in type 2 diabetic patients[J]. J Immunol, 2019, 203(10): 2614-2620. DOI: 10.4049/jimmunol.1900367.
[27] O'Brien A, Loftus RM, Pisarska MM, et al. Obesity reduces mTORC1 activity in mucosal-associated invariant T cells, driving defective metabolic and functional responses[J]. J Immunol, 2019, 202(12): 3404-3411. DOI: 10.4049/jimmunol.1801600.
[28] Bertrand L, Lehuen A. MAIT cells in metabolic diseases[J]. Mol Metab, 2019, 27S Suppl:S114-S121. DOI: 10.1016/j.molmet.2019.06.025.
[29] Magalhaes I, Kiaf B, Lehuen A. iNKT and MAIT cell alterations in diabetes[J]. Front Immunol, 2015, 6:341. DOI: 10.3389/fimmu.2015.00341.
|