国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (5): 712-718.DOI: 10.3760/cma.j.cn441417-20241119-05002
肾小管细胞来源外泌体在肾纤维化中的研究进展
李晓童1 于胜强2
1滨州医学院第二临床医学院,烟台 264000;2青岛大学医学院附属医院 烟台毓璜顶医院,烟台 264000
收稿日期:
2024-11-19
出版日期:
2025-03-01
发布日期:
2025-03-14
通讯作者:
于胜强,Email:agourodman@163.com
基金资助:
山东省自然科学基金面上项目(ZR2021MH203)
Research progress of tubule-derived exosomes in renal fibrosis
Li Xiaotong1, Yu Shengqiang2
1 Second School of Clinical Medicine, Binzhou Medical University, Yantai 264000, China; 2 Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
Received:
2024-11-19
Online:
2025-03-01
Published:
2025-03-14
Contact:
Yu Shengqiang, Email: agourodman@163.com
Supported by:
Natural Science Foundation of Shandong Province (ZR2021MH203)
摘要:
慢性肾脏病以肾功能衰竭和肾纤维化进展为特征。肾小管细胞来源外泌体介导的细胞间通讯与肾纤维化有关。本文综述肾小管细胞来源外泌体在缺血性或梗阻性损伤后介导成纤维细胞活化和肾纤维化的作用,以及成为肾纤维化的新兴生物学标志物、干预治疗目标和靶向治疗载体的潜力。
李晓童 于胜强.
肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718.
Li Xiaotong, Yu Shengqiang.
Research progress of tubule-derived exosomes in renal fibrosis [J]. International Medicine and Health Guidance News, 2025, 31(5): 712-718.
[1] Gewin LS. Renal fibrosis: primacy of the proximal tubule[J]. Matrix Biol, 2018, 68-69:248-262. DOI: 10.1016/j.matbio.2018.02.006. [2] Jing H, Tang S, Lin S, et al. Adiponectin in renal fibrosis[J]. Aging (Albany NY), 2020, 12(5):4660-4672. DOI: 10.18632/aging.102811. [3] Nastase MV, Zeng-Brouwers J, Wygrecka M, et al. Targeting renal fibrosis: mechanisms and drug delivery systems[J]. Adv Drug Deliv Rev, 2018, 129:295-307. DOI: 10.1016/j.addr.2017.12.019. [4] Liu BC, Tang TT, Lv LL, et al. Renal tubule injury: a driving force toward chronic kidney disease[J]. Kidney Int, 2018, 93(3):568-579. DOI: 10.1016/j.kint.2017.09.033. [5] Yang L, Besschetnova TY, Brooks CR, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury[J]. Nat Med, 2010, 16(5):535-543, 1p following 143. DOI: 10.1038/nm.2144. [6] Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6):325-338. DOI: 10.1038/nrneph.2016.48. [7] Zuo Y, Liu Y. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis[J]. Nephrology (Carlton), 2018, 23 Suppl 4:38-43. DOI: 10.1111/nep.13472. [8] Lv LL, Feng Y, Tang TT, et al. New insight into the role of extracellular vesicles in kidney disease[J]. J Cell Mol Med, 2019, 23(2):731-739. DOI: 10.1111/jcmm.14101. [9] Ståhl AL, Johansson K, Mossberg M, et al. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases[J]. Pediatr Nephrol, 2019, 34(1):11-30. DOI: 10.1007/s00467-017-3816-z. [10] Karpman D, Ståhl AL, Arvidsson I. Extracellular vesicles in renal disease[J]. Nat Rev Nephrol, 2017, 13(9):545-562. DOI: 10.1038/nrneph.2017.98. [11] He C, Zheng S, Luo Y, et al. Exosome theranostics: biology and translational medicine[J]. Theranostics, 2018, 8(1):237-255. DOI: 10.7150/thno.21945. [12] Wortzel I, Dror S, Kenific CM, et al. Exosome-mediated metastasis: communication from a distance[J]. Dev Cell, 2019, 49(3):347-360. DOI: 10.1016/j.devcel.2019.04.011. [13] Guan H, Peng R, Mao L, et al. Injured tubular epithelial cells activate fibroblasts to promote kidney fibrosis through miR-150-containing exosomes[J]. Exp Cell Res, 2020, 392(2):112007. DOI: 10.1016/j.yexcr.2020.112007. [14] Liu X, Miao J, Wang C, et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis[J]. Kidney Int, 2020, 97(6):1181-1195. DOI: 10.1016/j.kint.2019.11.026. [15] Miranda KC, Bond DT, McKee M, et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease[J]. Kidney Int, 2010, 78(2):191-199. DOI: 10.1038/ki.2010.106. [16] Deb A, Gupta S, Mazumder PB. Exosomes: a new horizon in modern medicine[J]. Life Sci, 2021, 264:118623. DOI: 10.1016/j.lfs.2020.118623. [17] Kim DJ, Kang JM, Park SH, et al. Diabetes aggravates post-ischaemic renal fibrosis through persistent activation of TGF-β1 and Shh signalling[J]. Sci Rep, 2017, 7(1):16782. DOI: 10.1038/s41598-017-16977-z. [18] Chen S, Zhang M, Li J, et al. β-catenin-controlled tubular cell-derived exosomes play a key role in fibroblast activation via the OPN-CD44 axis[J]. J Extracell Vesicles, 2022, 11(3):e12203. DOI: 10.1002/jev2.12203. [19] Wen J, Ma Z, Livingston MJ, et al. Decreased secretion and profibrotic activity of tubular exosomes in diabetic kidney disease[J]. Am J Physiol Renal Physiol, 2020, 319(4):F664-F673. DOI: 10.1152/ajprenal.00292.2020. [20] Zhou X, Zhao S, Li W, et al. Tubular cell-derived exosomal miR-150-5p contributes to renal fibrosis following unilateral ischemia-reperfusion injury by activating fibroblast in vitro and in vivo[J]. Int J Biol Sci, 2021, 17(14):4021-4033. DOI: 10.7150/ijbs.62478. [21] Croker BA, Kiu H, Nicholson SE. SOCS regulation of the JAK/STAT signalling pathway[J]. Semin Cell Dev Biol, 2008, 19(4):414-422. DOI: 10.1016/j.semcdb.2008. 07.010. [22] Luan J, Fu J, Wang D, et al. miR-150-based RNA interference attenuates tubulointerstitial fibrosis through the SOCS1/JAK/STAT pathway in vivo and in vitro[J]. Mol Ther Nucleic Acids, 2020, 22:871-884. DOI: 10.1016/j.omtn.2020.10.008. [23] Recio C, Lazaro I, Oguiza A, et al. Suppressor of cytokine signaling-1 peptidomimetic limits progression of diabetic nephropathy[J]. J Am Soc Nephrol, 2017, 28(2):575-585. DOI: 10.1681/ASN.2016020237. [24] Zhang W, Li X, Tang Y, et al. miR-155-5p implicates in the pathogenesis of renal fibrosis via targeting SOCS1 and SOCS6[J]. Oxid Med Cell Longev, 2020, 2020:6263921. DOI: 10.1155/2020/6263921. [25] Tsai YC, Kuo MC, Hung WW, et al. Proximal tubule-derived exosomes contribute to mesangial cell injury in diabetic nephropathy via miR-92a-1-5p transfer[J]. Cell Commun Signal, 2023, 21(1):10. DOI: 10.1186/s12964-022- 00997-y. [26] Simonson MS. Phenotypic transitions and fibrosis in diabetic nephropathy[J]. Kidney Int, 2007, 71(9):846-854. DOI: 10.1038/sj.ki.5002180. [27] Jin J, Shi X, Li Y, et al. Reticulocalbin 3 deficiency in alveolar epithelium exacerbated bleomycin-induced pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2018, 59(3):320-333. DOI: 10.1165/rcmb.2017-0347OC. [28] Wang L, Wang HL, Liu TT, et al. TGF-Beta as a master regulator of diabetic nephropathy[J]. Int J Mol Sci, 2021, 22(15):7881. DOI: 10.3390/ijms22157881. [29] Higgins SP, Tang Y, Higgins CE, et al. TGF-β1/p53 signaling in renal fibrogenesis[J]. Cell Signal, 2018, 43:1-10. DOI: 10.1016/j.cellsig.2017.11.005. [30] Zhang Z, Xing T, Chen Y, et al. Exosome-mediated miR-200b promotes colorectal cancer proliferation upon TGF-β1 exposure[J]. Biomed Pharmacother, 2018, 106:1135-1143. DOI: 10.1016/j.biopha.2018.07.042. [31] Zhao S, Li W, Yu W, et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys[J]. Theranostics, 2021, 11(18):8660-8673. DOI: 10.7150/thno.62820. [32] Glowacki F, Savary G, Gnemmi V, et al. Increased circulating miR-21 levels are associated with kidney fibrosis[J]. PLoS One, 2013, 8(2):e58014. DOI: 10.1371/journal.pone.0058014. [33] Zarjou A, Yang S, Abraham E, et al. Identification of a microRNA signature in renal fibrosis: role of miR-21[J]. Am J Physiol Renal Physiol, 2011, 301(4):F793-F801. DOI: 10.1152/ajprenal.00273.2011. [34] Yu X, Odenthal M, Fries JW. Exosomes as miRNA carriers: formation-function-future[J]. Int J Mol Sci, 2016, 17(12):2028. DOI: 10.3390/ijms17122028. [35] Du J, Liang Y, Li J, et al. Gastric cancer cell-derived exosomal microRNA-23a promotes angiogenesis by targeting PTEN[J]. Front Oncol, 2020, 10:326. DOI: 10.3389/fonc.2020.00326. [36] Xu H, Ling M, Xue J, et al. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking[J]. Theranostics, 2018, 8(19):5419-5433. DOI: 10.7150/thno.27876. [37] Hu Y, Rao SS, Wang ZX, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function[J]. Theranostics, 2018, 8(1):169-184. DOI: 10.7150/thno.21234. [38] Luo Q, Cai Z, Tu J, et al. Total flavonoids from Smilax glabra Roxb blocks epithelial-mesenchymal transition and inhibits renal interstitial fibrosis by targeting miR-21/PTEN signaling[J]. J Cell Biochem, 2019, 120(3):3861-3873. DOI: 10.1002/jcb.27668. [39] Liu D, Liu F, Li Z, et al. HNRNPA1-mediated exosomal sorting of miR-483-5p out of renal tubular epithelial cells promotes the progression of diabetic nephropathy-induced renal interstitial fibrosis[J]. Cell Death Dis, 2021, 12(3):255. DOI: 10.1038/s41419-021- 03460-x. [40] Ma N, Xiang Y, Zhang Y, et al. The balance mediated by miRNAs and the heme oxygenase 1 feedback loop contributes to biological effects[J]. J Cell Biochem, 2013, 114(12):2637-2642. DOI: 10.1002/jcb.24631. [41] Strutz F, Zeisberg M. Renal fibroblasts and myofibroblasts in chronic kidney disease[J]. J Am Soc Nephrol, 2006, 17(11):2992-2998. DOI: 10.1681/ASN.2006050420. [42] Li H, Zhang L, Wang F, et al. Attenuation of glomerular injury in diabetic mice with tert-butylhydroquinone through nuclear factor erythroid 2-related factor 2-dependent antioxidant gene activation[J]. Am J Nephrol, 2011, 33(4):289-297. DOI: 10.1159/000324694. [43] Ebadi Z, Moradi N, Kazemi Fard T, et al. Captopril and spironolactone can attenuate diabetic nephropathy in Wistar rats by targeting microRNA-192 and microRNA-29a/b/c[J]. DNA Cell Biol, 2019, 38(10):1134-1142. DOI: 10.1089/dna.2019.4732. [44] Kelly KJ, Zhang J, Han L, et al. Improved structure and function in autosomal recessive polycystic rat kidneys with renal tubular cell therapy[J]. PLoS One, 2015, 10(7):e0131677. DOI: 10.1371/journal.pone.0131677. [45] Fakhredini F, Mansouri E, Mard SA, et al. Effects of exosomes derived from kidney tubular cells on diabetic nephropathy in rats[J]. Cell J, 2022, 24(1):28-35. DOI: 10.22074/cellj.2022.7591. [46] Petrillo F, Iervolino A, Zacchia M, et al. MicroRNAs in renal diseases: a potential novel therapeutic target[J]. Kidney Dis (Basel), 2017, 3(3):111-119. DOI: 10.1159/000481730. |
[1] | 朱鹏 唐文玲 覃刚. 结直肠癌中微小RNA功能及临床价值进展 [J]. 国际医药卫生导报, 2025, 31(6): 886-890. |
[2] | 潘文昕 姜伟炜. 结肠镜检查时机对缺血性结肠炎患者预后影响的研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 914-917. |
[3] | 张子怡 孙大康. TRIM22抗HIV-1作用机制研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 918-922. |
[4] | 易伟 米倩倩 赵洁 李博宇 王丹. 彩色多普勒血流成像在球后血流动力学检测中的应用 [J]. 国际医药卫生导报, 2025, 31(6): 922-926. |
[5] | 陈秀珠 张凯 韦岩笑 丛晨阳. 甲状腺相关眼病的药物治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 927-929. |
[6] | 魏歆林 杨会会 刘林波 熊朝亮. 尿外泌体miR-155及脂水平与糖尿病肾病严重程度的相关性分析 [J]. 国际医药卫生导报, 2025, 31(6): 949-954. |
[7] | 张涵 孙婷 王延飞 张肖林 车娟. 移植后淋巴组织增生性疾病在儿童扁桃体腺样体肥大中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 752-757. |
[8] | 莫家婵 范万峰 姜兴岳. 基于磁共振成像的影像组学在垂体腺瘤中的应用现状及进展 [J]. 国际医药卫生导报, 2025, 31(5): 757-760. |
[9] | 刘伟锋 郭媛 唐文洁 杨蕊梦 樊浩 魏新华. “医+X”人才培养模式对医学影像研究生综合能力培养的初探 [J]. 国际医药卫生导报, 2025, 31(4): 530-534. |
[10] | 郝慧慧 冯安华 马晓林 李敖 丁传华. SOAP思维模式下融合案例与问题教学模式在临床药学实习带教中的应用 [J]. 国际医药卫生导报, 2025, 31(4): 539-542. |
[11] | 洪金全 黄晓玲 黄震宇 黄豪博. 弥漫大B细胞淋巴瘤中脂质代谢异常及其干预的研究进展 [J]. 国际医药卫生导报, 2025, 31(4): 559-562. |
[12] | 王兴兴 张肖林 王延飞. 间充质干细胞在神经退行性疾病中的研究进展 [J]. 国际医药卫生导报, 2025, 31(4): 562-567. |
[13] | 曾令果 赵洲 刘为朋 胡宝光. 外科治疗高血压研究进展 [J]. 国际医药卫生导报, 2025, 31(3): 411-415. |
[14] | 邢文华 梁栋 刘洁 李梦洁 张晓敏. 线粒体动力学在糖尿病肾病中的作用及调节机制 [J]. 国际医药卫生导报, 2025, 31(2): 183-187. |
[15] | 孙虓 刘成霞 王娜 郝佳慧 储琳琳 于瑞杰. 探讨不良饮食习惯与腐胺及胃炎癌转化的关系 [J]. 国际医药卫生导报, 2025, 31(2): 221-223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||