国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (6): 918-922.DOI: 10.3760/cma.j.cn441417-20240805-04008
TRIM22抗HIV-1作用机制研究进展
张子怡1 孙大康2
1滨州医学院附属医院检验科,滨州 256600;2滨州医学院附属医院临床医学研究中心,滨州 256600
收稿日期:
2024-08-05
出版日期:
2025-03-15
发布日期:
2025-03-17
通讯作者:
孙大康,Email:sdkaaa@163.com
基金资助:
研究生教育创新计划(2021478)
Research progress on mechanism of TRIM22 against HIV-1
Zhang Ziyi1, Sun Dakang2
1 Laboratory Department, Binzhou Medical University Hospital, Binzhou 256600, China; 2 Clinical Medical Research Center, Binzhou Medical University Hospital, Binzhou 256600, China
Received:
2024-08-05
Online:
2025-03-15
Published:
2025-03-17
Contact:
Sun Dakang, Email: sdkaaa@163.com
Supported by:
Graduate Education Innovation Program (2021478)
摘要:
人类免疫缺陷病毒1型(human immunodeficiency virus-1,HIV-1)对靶细胞的感染受到宿主细胞蛋白的限制,其中三基序蛋白(tripartite-motif protein,TRIM)家族是具有抗病毒作用和调节固有免疫反应的限制因子。TRIM22作为TRIM家族的一员,可被干扰素强烈上调,已被证明在抗HIV-1过程中发挥着重要作用,可通过调节自噬信号通路或转录因子特异蛋白1(specific protein 1,Sp1)来抑制病毒的复制及转录过程。本文主要阐述TRIM22结构、细胞定位及其抗HIV-1的作用机制,以期为HIV-1防治提供理论依据。
张子怡 孙大康.
TRIM22抗HIV-1作用机制研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 918-922.
Zhang Ziyi, Sun Dakang.
Research progress on mechanism of TRIM22 against HIV-1 [J]. International Medicine and Health Guidance News, 2025, 31(6): 918-922.
[1] Williams E, Moso M, Lim C, et al. Laboratory diagnosis of HIV: a contemporary overview in the Australian context[J]. Pathology, 2023,55(5):610-620. DOI: 10.1016/j.pathol.2023.04.001. [2] Gaikwad SY, Phatak P, Mukherjee A. Cutting edge strategies for screening of novel anti-HIV drug candidates against HIV infection: a concise overview of cell based assays [J]. Heliyon, 2023, 9(5): e16027. DOI: 10.1016/j.heliyon.2023.e16027. [3] Landovitz RJ, Scott H, Deeks SG. Prevention, treatment and cure of HIV infection[J]. Nat Rev Microbiol, 2023, 21(10): 657-670. DOI: 10.1038/s41579-023-00914-1. [4] Madham S, Visshishta J, Dasagari VH, et al. A review of basic knowledge of hiv infection for orthodontic management of HIV patients[J]. Cureus, 2023, 15(4): e37770. DOI: 10.7759/cureus.37770. [5] Koepke L, Gack MU, Sparrer KM. The antiviral activities of TRIM proteins [J]. Curr Opin Microbiol, 2021, 59: 50-57. DOI: 10.1016/j.mib.2020.07.005. [6] Di Rienzo M, Romagnoli A, Antonioli M, et al. TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses [J]. Cell Death Differ, 2020,27(3): 887-902. DOI: 10.1038/s41418-020-0495-2. [7] Tao T, Zhang Y, Guan C, et al. Ubiquitin ligase TRIM22 inhibits ovarian cancer malignancy via TCF4 degradation[J]. Mol Cancer Res, 2024. DOI: 10.1158/1541-7786.MCR-23-0962. [8] Eldin P, Papon L, Oteiza A, et al. TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus[J]. J Gen Virol, 2009, 90(Pt 3): 536-545. DOI: 10.1099/vir.0.006288-0. [9] Lorick KL, Jensen JP, Fang S, et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination[J]. Proc Natl Acad Sci U S A, 1999,96(20):11364-11369. DOI: 10.1073/pnas.96.20.11364. [10] Buetow L, Huang DT. Structural insights into the catalysis and regulation of E3 ubiquitin ligases [J]. Nat Rev Mol Cell Biol, 2016,17(10): 626-642. DOI: 10.1038/nrm.2016.91. [11] Jia X, Zhao Q, Xiong Y. HIV suppression by host restriction factors and viral immune evasion[J]. Curr Opin Struct Biol, 2015, 31: 106-114. DOI: 10.1016/j.sbi.2015.04.004. [12] Wu X, Anderson JL, Campbell EM, et al. Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection[J]. Proc Natl Acad Sci U S A, 2006, 103(19): 7465-7470. DOI: 10.1073/pnas.0510483103. [13] Li X, Yeung DF, Fiegen AM, et al. Determinants of the higher order association of the restriction factor TRIM5alpha and other tripartite motif (TRIM) proteins[J]. J Biol Chem, 2011, 286(32): 27959-27970. DOI: 10.1074/jbc.M111.260406. [14] Sivaramakrishnan G, Sun Y, Rajmohan R, et al. B30.2/SPRY domain in tripartite motif-containing 22 is essential for the formation of distinct nuclear bodies [J]. FEBS Lett, 2009, 583(12): 2093-2099. DOI: 10.1016/j.febslet.2009.05.036. [15] Esposito D, Koliopoulos MG, Rittinger K. Structural determinants of TRIM protein function[J]. Biochem Soc Trans, 2017, 45(1): 183-191. DOI: 10.1042/BST20160325. [16] Rhodes D A, de Bono B, Trowsdale J. Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? [J]. Immunology, 2005, 116(4): 411-417. DOI: 10.1111/j.1365-2567. 2005.02248.x. [17] Grutter C, Briand C, Capitani G, et al. Structure of the PRYSPRY-domain: implications for autoinflammatory diseases[J]. FEBS Lett, 2006, 580(1): 99-106. DOI: 10.1016/j.febslet.2005.11.076. [18] Yu S, Gao B, Duan Z, et al. Identification of tripartite motif-containing 22 (TRIM22) as a novel NF-kappaB activator[J]. Biochem Biophys Res Commun, 2011, 410(2): 247-251. DOI: 10.1016/j.bbrc.2011.05.124. [19] Chen C, Zhao D, Fang S, et al. TRIM22-mediated apoptosis is associated with bak oligomerization in monocytes[J]. Sci Rep, 2017,7:39961. DOI: 10.1038/srep39961. [20] Gao B, Wang Y, Xu W, et al. A 5' extended IFN-stimulating response element is crucial for IFN-gamma-induced tripartite motif 22 expression via interaction with IFN regulatory factor-1[J]. J Immunol, 2010,185(4): 2314-2323. DOI: 10.4049/jimmunol.1001053. [21] Gao B, Xu W, Zhong L, et al. p300, but not PCAF, collaborates with IRF-1 in stimulating TRIM22 expression independently of its histone acetyltransferase activity[J]. Eur J Immunol, 2013,43(8):2174-2184. DOI: 10.1002/eji.201343308. [22] Hattlmann CJ, Kelly JN, Barr SD. TRIM22: a diverse and dynamic antiviral protein[J]. Molecular Biology International, 2012:1-10. DOI: 10.1155/2012/153415. [23] 孙大康, 安新业, 周玉明, 等. HIV衣壳蛋白P24与TRIM22在HEK293T细胞中的表达及共定位[J]. 细胞与分子免疫学杂志, 2015,31(8):1081-1084. [24] Petersson J, Lonnbro P, Herr AM, et al. The human IFN-inducible p53 target gene TRIM22 colocalizes with the centrosome independently of cell cycle phase[J]. Exp Cell Res, 2010, 316(4): 568-579. DOI: 10.1016/j.yexcr.2009.12.007. [25] Sivaramakrishnan G, Sun Y, Tan S K, et al. Dynamic localization of tripartite motif-containing 22 in nuclear and nucleolar bodies[J]. Exp Cell Res, 2009,315(8):1521-1532. DOI: 10.1016/j.yexcr.2009.01.028. [26] Liu S, Yao S, Yang H, et al. Autophagy: regulator of cell death[J]. Cell Death Dis, 2023, 14(10): 648. DOI: 10.1038/s41419-023-06154-8. [27] Miller DR, Thorburn A. Autophagy and organelle homeostasis in cancer [J]. Dev Cell, 2021, 56(7): 906-918. DOI: 10.1016/j.devcel.2021.02.010. [28] Matoba K, Noda NN. Structural catalog of core Atg proteins opens new era of autophagy research[J]. J Biochem, 2021,169(5):517-525. DOI: 10.1093/jb/mvab017. [29] Kumar A V, Mills J, Lapierre LR. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging [J]. Front Cell Dev Biol, 2022, 10: 793328. DOI: 10.3389/fcell.2022.793328. [30] Espert L, Varbanov M, Robert-Hebmann V, et al. Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection [J]. PLoS One, 2009, 4(6): e5787. DOI: 10.1371/journal.pone.0005787. [31] Kyei GB, Dinkins C, Davis AS, et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages[J]. J Cell Biol, 2009, 186(2): 255-268. DOI: 10.1083/jcb.200903070. [32] Sagnier S, Daussy CF, Borel S, et al. Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes[J]. J Virol, 2015,89(1): 615-625. DOI: 10.1128/JVI.02174-14. [33] Cloherty A, Rader AG, Compeer B, et al. Human TRIM5alpha: autophagy connects cell-intrinsic HIV-1 restriction and innate immune sensor functioning[J]. Viruses, 2021,13(2): 320. DOI: 10.3390/v13020320. [34] Wu N, Gou X, Hu P, et al. Mechanism of autophagy induced by activation of the AMPK/ERK/mTOR signaling pathway after TRIM22-mediated DENV-2 infection of HUVECs [J]. Virol J, 2022, 19(1): 228. DOI: 10.1186/s12985-022-01932-w. [35] Chen J, Zhao S, Cui Z, et al. MicroRNA-376b-3p promotes porcine reproductive and respiratory syndrome virus replication by targeting viral restriction factor TRIM22[J]. J Virol, 2022, 96(2): e159721. DOI: 10.1128/JVI.01597-21. [36] Heo H, Park H, Lee M S, et al. TRIM22 facilitates autophagosome-lysosome fusion by mediating the association of GABARAPs and PLEKHM1[J]. Autophagy, 2024, 20(5): 1098-1113. DOI: 10.1080/15548627. 2023.2287925. [37] Liu W, Zhao Y, Wang G, et al. TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling[J]. Redox Biol, 2022, 53: 102344. DOI: 10.1016/j.redox.2022.102344. [38] Fields J, Dumaop W, Eleuteri S, et al. HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders[J]. The Journal of neuroscience, 2015, 35(5): 1921-1938. DOI: 10.1523/JNEUROSCI. 3207-14.2015. [39] Van Grol J, Subauste C, Andrade RM, et al. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3[J]. PLoS One, 2010, 5(7): e11733. DOI: 10.1371/journal.pone.0011733. [40] Espert L. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4[J]. Journal of Clinical Investigation, 2006, 116(8): 2161-2172. DOI: 10.1172/JCI26185. [41] Jiang JF, Zhou ZY, Liu YZ, et al. Role of Sp1 in atherosclerosis[J]. Mol Biol Rep, 2022, 49(10): 9893-9902. DOI: 10.1007/s11033-022-07516-9. [42] Wang P, Song Y, Li H, et al. SIRPA enhances osteosarcoma metastasis by stabilizing SP1 and promoting SLC7A3-mediated arginine uptake[J]. Cancer Lett, 2023, 576: 216412. DOI: 10.1016/j.canlet.2023.216412. [43] Ivanenko KA, Prassolov VS, Khabusheva ER. Transcription factor Sp1 in the expression of genes encoding components of MAPK, JAK/STAT, and PI3K/Akt signaling pathways [J]. Mol Biol (Mosk), 2022,56(5):832-847. DOI: 10.31857/S0026898422050081. [44] Nchioua R, Bosso M, Kmiec D, et al. Cellular factors targeting HIV-1 transcription and viral RNA transcripts[J]. Viruses, 2020,12(5): 495. DOI: 10.3390/v12050495. [45] Kajaste-Rudnitski A, Marelli SS, Pultrone C, et al. TRIM22 inhibits HIV-1 transcription independently of its E3 ubiquitin ligase activity, Tat, and NF-kappaB-responsive long terminal repeat elements [J]. J Virol, 2011,85(10): 5183-5196. DOI: 10.1128/JVI.02302-10. [46] Turrini F, Marelli S, Kajaste-Rudnitski A, et al. HIV-1 transcriptional silencing caused by TRIM22 inhibition of Sp1 binding to the viral promoter[J]. Retrovirology, 2015,12(104):104. DOI: 10.1186/s12977-015-0230-0. [47] Turrini F, Saliu F, Forlani G, et al. Interferon-inducible TRIM22 contributes to maintenance of HIV-1 proviral latency in T cell lines[J]. Virus Res, 2019, 269: 197631. DOI: 10.1016/j.virusres.2019.05.009. [48] Butovskaya E, Heddi B, Bakalar B, et al. Major G-quadruplex form of HIV-1 LTR reveals a (3 + 1) folding topology containing a stem-loop[J]. J Am Chem Soc, 2018,140(42): 13654-13662. DOI: 10.1021/jacs.8b05332. [49] Rohr O, Aunis D, Schaeffer E. COUP-TF and Sp1 interact and cooperate in the transcriptional activation of the human immunodeficiency virus type 1 long terminal repeat in human microglial cells[J]. J Biol Chem, 1997, 272(49): 31149-31155. DOI: 10.1074/jbc.272.49.31149. |
[1] | 朱鹏 唐文玲 覃刚. 结直肠癌中微小RNA功能及临床价值进展 [J]. 国际医药卫生导报, 2025, 31(6): 886-890. |
[2] | 潘文昕 姜伟炜. 结肠镜检查时机对缺血性结肠炎患者预后影响的研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 914-917. |
[3] | 易伟 米倩倩 赵洁 李博宇 王丹. 彩色多普勒血流成像在球后血流动力学检测中的应用 [J]. 国际医药卫生导报, 2025, 31(6): 922-926. |
[4] | 陈秀珠 张凯 韦岩笑 丛晨阳. 甲状腺相关眼病的药物治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 927-929. |
[5] | 李晓童 于胜强. 肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718. |
[6] | 张涵 孙婷 王延飞 张肖林 车娟. 移植后淋巴组织增生性疾病在儿童扁桃体腺样体肥大中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 752-757. |
[7] | 莫家婵 范万峰 姜兴岳. 基于磁共振成像的影像组学在垂体腺瘤中的应用现状及进展 [J]. 国际医药卫生导报, 2025, 31(5): 757-760. |
[8] | 刘伟锋 郭媛 唐文洁 杨蕊梦 樊浩 魏新华. “医+X”人才培养模式对医学影像研究生综合能力培养的初探 [J]. 国际医药卫生导报, 2025, 31(4): 530-534. |
[9] | 郝慧慧 冯安华 马晓林 李敖 丁传华. SOAP思维模式下融合案例与问题教学模式在临床药学实习带教中的应用 [J]. 国际医药卫生导报, 2025, 31(4): 539-542. |
[10] | 洪金全 黄晓玲 黄震宇 黄豪博. 弥漫大B细胞淋巴瘤中脂质代谢异常及其干预的研究进展 [J]. 国际医药卫生导报, 2025, 31(4): 559-562. |
[11] | 王兴兴 张肖林 王延飞. 间充质干细胞在神经退行性疾病中的研究进展 [J]. 国际医药卫生导报, 2025, 31(4): 562-567. |
[12] | 曾令果 赵洲 刘为朋 胡宝光. 外科治疗高血压研究进展 [J]. 国际医药卫生导报, 2025, 31(3): 411-415. |
[13] | 邢文华 梁栋 刘洁 李梦洁 张晓敏. 线粒体动力学在糖尿病肾病中的作用及调节机制 [J]. 国际医药卫生导报, 2025, 31(2): 183-187. |
[14] | 孙虓 刘成霞 王娜 郝佳慧 储琳琳 于瑞杰. 探讨不良饮食习惯与腐胺及胃炎癌转化的关系 [J]. 国际医药卫生导报, 2025, 31(2): 221-223. |
[15] | 李香玉 郑慧娟 樊艳婷. 儿童流感嗜血杆菌感染特点及疾病进展的影响因素 [J]. 国际医药卫生导报, 2025, 31(2): 265-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||