国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (11): 1812-1815.DOI: 10.3760/cma.j.cn441417-20250106-11010
PI3K/Akt/KDM5A通路在心房颤动中的研究进展
赵珂 刘振兴 时大宇 徐会圃
滨州医学院附属医院心血管内科,滨州 256600
收稿日期:
2025-01-06
出版日期:
2025-06-01
发布日期:
2025-06-12
通讯作者:
徐会圃,Email:xuhuip1967@163.com
基金资助:
山东省医药卫生科技项目(202303010661)
Research progress of P13K/AKT/KDM5A pathway in atrial fibrillation
Zhao Ke, Liu Zhenxing, Shi Dayu, Xu Huipu
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, Binzhou 256600,China
Received:
2025-01-06
Online:
2025-06-01
Published:
2025-06-12
Contact:
Xu Huipu, Email: xuhuipu1967@163.com
Supported by:
Shandong Province Medical and Health Science and Technology Project(202303010661)
摘要:
心脏重构是高血压、心肌梗死、心力衰竭等疾病的终末期病理表现,其核心环节是心肌纤维化。现已有大量研究证实,心房重构是引发心房颤动的重要机制之一。其中,磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/丝氨酸/苏氨酸激酶(serine/threonine kinase,Akt)信号通路调控心肌纤维化进展,与心房重构密切相关。目前,对于赖氨酸特异性脱甲基酶5 A(lysine-specific demethylase 5A,KDM5A)如何调节心肌纤维化发生的研究处于刚起步阶段,进一步研究KDM5A在心肌纤维化中的作用机制可能成为未来治疗心房颤动的有效策略之一。
赵珂 刘振兴 时大宇 徐会圃.
PI3K/Akt/KDM5A通路在心房颤动中的研究进展 [J]. 国际医药卫生导报, 2025, 31(11): 1812-1815.
Zhao Ke, Liu Zhenxing, Shi Dayu, Xu Huipu.
Research progress of P13K/AKT/KDM5A pathway in atrial fibrillation [J]. International Medicine and Health Guidance News, 2025, 31(11): 1812-1815.
[1]Lau DH, Linz D, Sanders P. New findings in atrial fibrillation mechanisms[J]. Card Electrophysiol Clin, 2019, 11(4): 563-571. DOI: 10.1016/j.ccep.2019.08.007. [2]Staerk L, Sherer JA, Ko D, et al. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes[J]. Circ Res, 2017, 120(9): 1501-1517. DOI: 10.1161/CIRCRESAHA.117.309732. [3]Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS[J]. Eur Heart J, 2016, 37(38): 2893-2962. DOI: 10.1093/eurheartj/ehw210. [4]Gudbjartsson DF, Holm H, Sulem P, et al. A frameshift deletion in the sarcomere gene MYL4 causes early-onset familial atrial fibrillation[J]. Eur Heart J, 2017, 38(1): 27-34. DOI: 10.1093/eurheartj/ehw379. [5]Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation[J]. JACC Clin Electrophysiol, 2017, 3(5): 425-435. DOI: 10.1016/j.jacep.2017.03.002. [6]Gourdie RG, Dimmeler S, Kohl P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease[J]. Nat Rev Drug Discov, 2016, 15(9): 620-638. DOI: 10.1038/nrd.2016.89. [7]Qin W, Cao L, Massey IY. Role of PI3K/Akt signaling pathway in cardiac fibrosis[J]. Mol Cell Biochem, 2021, 476(11): 4045-4059. DOI: 10.1007/s11010-021-04219-w. [8]Moore-Morris T, Cattaneo P, Puceat M, et al. Origins of cardiac fibroblasts[J]. J Mol Cell Cardiol, 2016, 91: 1-5. DOI: 10.1016/j.yjmcc.2015.12.031. [9]Lajiness JD, Conway SJ. The dynamic role of cardiac fibroblasts in development and disease[J]. J Cardiovasc Transl Res, 2012, 5(6): 739-748. DOI: 10.1007/s12265-012-9394-3. [10]Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis[J]. J Cell Physiol, 2010, 225(3):631-637. DOI: 10.1002/jcp.22322. [11]Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis[J]. J Clin Invest, 2017, 127(10): 3770-3783. DOI: 10.1172/JCI94753. [12]Meng Q, Bhandary B, Bhuiyan MS, et al. Myofibroblast-specific TGFβ receptor II signaling in the fibrotic response to cardiac myosin binding protein C-induced cardiomyopathy[J]. Circ Res, 2018, 123(12): 1285-1297. DOI: 10.1161/CIRCRESAHA.118.313089. [13]Vasquez C, Morley GE. The origin and arrhythmogenic potential of fibroblasts in cardiac disease[J]. J Cardiovasc Transl Res, 2012, 5(6): 760-767. DOI: 10.1007/s12265-012-9408-1. [14]Askar SF, Bingen BO, Schalij MJ, et al. Similar arrhythmicity in hypertrophic and fibrotic cardiac cultures caused by distinct substrate-specific mechanisms[J]. Cardiovasc Res, 2013, 97(1):171-181. DOI: 10.1093/cvr/cvs290. [15]闫景顺,朱林平,张红霞,等.中医药调控心肌纤维化相关信号通路研究进展[J].中国实验方剂学杂志,2024,30(13):230-239. DOI:10.13422/j.cnki.syfjx.20240603. [16]Chiang GG, Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at ser-2448 is mediated by p70S6 kinase[J]. J Biol Chem, 2005, 280(27): 25485-25490. DOI: 10.1074/jbc.M501707200. [17]Sekulić A, Hudson CC, Homme JL, et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells[J]. Cancer Res, 2000, 60(13): 3504-3513. [18]Shi B, Ma M, Zheng Y, et al. mTOR and Beclin1: Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury[J]. J Cell Physiol, 2019, 234(8): 12562-12568. DOI: 10.1002/jcp.28125. [19]Baretić D, Williams RL. The structural basis for mTOR function[J]. Semin Cell Dev Biol, 2014, 36:91-101. DOI: 10.1016/j.semcdb.2014.09.024. [20]Huang W, Zhou P, Zou X, et al. Emodin ameliorates myocardial fibrosis in mice by inactivating the ROS/PI3K/Akt/mTOR axis[J]. Clin Exp Hypertens, 2024, 46(1): 2326022. DOI: 10.1080/10641963.2024.2326022. [21]Kajstura J, Urbanek K, Perl S, et al. Cardiomyogenesis in the adult human heart[J]. Circ Res, 2010, 107(2): 305-315. DOI: 10.1161/CIRCRESAHA.110.223024. [22]McNab TC, Tseng YT, Stabila JP, et al. Liganded and unliganded steroid receptor modulation of beta 1 adrenergic receptor gene transcription[J]. Pediatr Res, 2001, 50(5): 575-580. DOI: 10.1203/00006450-200111000-00007. [23]Wadhawan R, Tseng YT, Stabila J, et al. Regulation of cardiac beta 1-adrenergic receptor transcription during the developmental transition[J]. Am J Physiol Heart Circ Physiol, 2003, 284(6): H2146-H2152. DOI: 10.1152/ajpheart.00929.2002. [24]Takahashi-Yanaga F. Roles of glycogen synthase kinase-3 (GSK-3) in cardiac development and heart disease[J]. J UOEH, 2018, 40(2): 147-156. DOI: 10.7888/juoeh.40.147. [25]Hailiwu R, Zeng H, Zhan M, et al. Salvianolic acid a diminishes LDHA-driven aerobic glycolysis to restrain myofibroblasts activation and cardiac fibrosis via blocking Akt/GSK-3β/HIF-1α axis[J]. Phytother Res, 2023, 37(10): 4540-4556. DOI: 10.1002/ptr.7925. [26]Xin Z, Ma Z, Hu W, et al. FOXO1/3: Potential suppressors of fibrosis[J]. Ageing Res Rev, 2018, 41:42-52. DOI: 10.1016/j.arr.2017.11.002. [27]Ricke-Hoch M, Bultmann I, Stapel B, et al. Opposing roles of Akt and STAT3 in the protection of the maternal heart from peripartum stress[J]. Cardiovasc Res, 2014, 101(4): 587-596. DOI: 10.1093/cvr/cvu010. [28]Pramod S, Shivakumar K. Mechanisms in cardiac fibroblast growth: an obligate role for skp2 and FOXO3a in ERK1/2 MAPK-dependent regulation of p27kip1[J]. Am J Physiol Heart Circ Physiol, 2014, 306(6): H844-H855. DOI: 10.1152/ajpheart.00933.2013. [29]Li CY, Wang W, Leung CH, et al. KDM5 family as therapeutic targets in breast cancer: Pathogenesis and therapeutic opportunities and challenges[J]. Mol Cancer, 2024, 23(1): 109. DOI: 10.1186/s12943-024-02011-0. [30]Spangle JM, Dreijerink KM, Groner AC, et al. PI3K/AKT signaling regulates H3K4 methylation in breast cancer[J]. Cell Rep, 2016, 15(12): 2692-2704. DOI: 10.1016/j.celrep.2016.05.046. [31]Horton JR, Engstrom A, Zoeller EL, et al. Characterization of a linked jumonji domain of the KDM5/JARID1 family of histone h3 lysine 4 demethylases[J]. J Biol Chem, 2016, 291(6): 2631-2646. DOI: 10.1074/jbc.M115.698449. [32]Blair LP, Cao J, Zou MR, et al. Epigenetic regulation by lysine demethylase 5 (KDM5) enzymes in cancer[J]. Cancers (Basel), 2011, 3(1): 1383-1404. DOI: 10.3390/cancers3011383. [33]Paolicchi E, Crea F, Farrar WL, et al. Histone lysine demethylases in breast cancer[J]. Crit Rev Oncol Hematol, 2013, 86(2): 97-103. DOI: 10.1016/j.critrevonc.2012.11.008. [34]Guo L, Guo YY, Li BY, et al. Histone demethylase KDM5A is transactivated by the transcription factor C/EBPβ and promotes preadipocyte differentiation by inhibiting wnt/β-catenin signaling[J]. J Biol Chem, 2019, 294(24): 9642-9654. DOI: 10.1074/jbc.RA119.008419. [35]Yang X, Bam M, Becker W, et al. Long noncoding RNA AW112010 promotes the differentiation of inflammatory T cells by suppressing IL-10 expression through histone demethylation[J]. J Immunol, 2020, 205(4):987-993. DOI: 10.4049/jimmunol.2000330. [36]Li QM, Li JL, Feng ZH, et al. Effect of histone demethylase KDM5A on the odontogenic differentiation of human dental pulp cells[J]. Bioengineered, 2020, 11(1): 449-462. DOI: 10.1080/21655979.2020.1743536. [37]Zhang X, Wang W, Wang Y, et al. Extracellular vesicle-encapsulated miR-29b-3p released from bone marrow-derived mesenchymal stem cells underpins osteogenic differentiation[J]. Front Cell Dev Biol, 2021, 8: 581545. DOI: 10.3389/fcell.2020.581545. [38]Kong SY, Kim W, Lee HR, et al. The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells[J]. FASEB J, 2018, 32(2): 1108-1119. DOI: 10.1096/fj.201700780R. [39]Pointon JJ, Harvey D, Karaderi T, et al. The histone demethylase JARID1A is associated with susceptibility to ankylosing spondylitis[J]. Genes Immun, 2011, 12(5): 395-398. DOI: 10.1038/gene.2011.23. [40]Kirtana R, Manna S, Patra SK. Molecular mechanisms of KDM5A in cellular functions: facets during development and disease[J]. Exp Cell Res, 2020, 396(2): 112314. DOI: 10.1016/j.yexcr.2020.112314. [41]Pointon JJ, Harvey D, Karaderi T, et al. The histone demethylase JARID1A is associated with susceptibility to ankylosing spondylitis[J]. Genes Immun, 2011, 12(5): 395-398. DOI: 10.1038/gene.2011.23. [42]Heuser M, Yun H, Thol F. Epigenetics in myelodysplastic syndromes[J]. Semin Cancer Biol, 2018, 51:170-179. DOI: 10.1016/j.semcancer.2017.07.009. [43]魏婷,亓先杰,张旭,等.基于ChIP-seq技术分析心肌成纤维细胞中KDM5A调控的下游靶基因网络[J].中华全科医学,2023,21(9):1474-1477. DOI:10.16766/j.cnki.issn.1674-4152.003149. [44]张旭.基于转录组学研究AngⅡ/PI3K/Akt/KDM5A通路在心脏纤维化中的作用[D].蚌埠医学院,2023.DOI:10.26925/d.cnki.gbbyc.2023.000063. |
[1] | 陈娟娟. 中线导管在住院病区患者静脉治疗中的应用现状 [J]. 国际医药卫生导报, 2025, 31(9): 1565-1568. |
[2] | 苗森皓 李秀国. 基质金属蛋白酶及基质金属蛋白酶抑制剂在慢性鼻窦炎中的影响 [J]. 国际医药卫生导报, 2025, 31(8): 1254-1257. |
[3] | 杜永波 任毅 张靖琨 徐新松. 芪苈强心胶囊佐治心力衰竭合并心房颤动阳虚水泛证的临床效果 [J]. 国际医药卫生导报, 2025, 31(3): 387-391. |
[4] | 段玉薇 赵璞 费景兰. 刮痧治疗甲状腺结节的研究进展 [J]. 国际医药卫生导报, 2025, 31(3): 415-418. |
[5] | 徐丹 赵莹 高亭. 华法林、阿司匹林、氯吡格雷三联治疗心房颤动患者的效果及对凝血因子的影响 [J]. 国际医药卫生导报, 2025, 31(12): 2027-2032. |
[6] | 杜营营 张立君 孙俊花 李江博. 多模态数字化健康宣教对射频消融术后“空白期”心房颤动患者生活掌控感的影响 [J]. 国际医药卫生导报, 2025, 31(11): 1801-1805. |
[7] | 季增辉 曲辅政 韩佳琪 张娟 于养生 程浩然. 环状RNA在心力衰竭中的研究进展 [J]. 国际医药卫生导报, 2025, 31(11): 1816-1819. |
[8] | 骆美仪 俞朝贤 李红霞 黄苏. 经鼻高流量氧疗联合肺康复训练在肺结核合并呼吸衰竭中的应用研究进展 [J]. 国际医药卫生导报, 2025, 31(11): 1820-1825. |
[9] | 肖正平 李保松 张智睿 蒋宏. 基于Cajal间质细胞治疗慢传输型便秘患者的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1409-1414. |
[10] | 刘志强 张翠 董文敬 刘振 孙经武. 心肌纤维化与AMPK-mTOR-ULK1信号通路研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1297-1300. |
[11] | 王霞 赛海芳. 代谢组学在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1312-1316. |
[12] | 崔筱 刘亮. 辣椒素受体在腹泻型肠易激综合征发病中的作用 [J]. 国际医药卫生导报, 2024, 30(7): 1066-1070. |
[13] | 李小妹 卢健 覃莉 凌燕兰. 卵巢过度刺激综合征患者的护理干预研究现状 [J]. 国际医药卫生导报, 2024, 30(7): 1199-1202. |
[14] | 贺恒奕 张小伟 陈宁杰. 吸烟对肩袖损伤及预后的影响 [J]. 国际医药卫生导报, 2024, 30(5): 710-712. |
[15] | 朱建秋 罗幸 谢迎秋 主有峰. MSCs通过抑制PI3K/Akt信号通路减轻VAP肺损伤的作用研究 [J]. 国际医药卫生导报, 2024, 30(4): 597-601. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||