国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (11): 1806-1811.DOI: 10.3760/cma.j.cn441417-20250113-11009
吴建波 刘茜
滨州医学院附属医院心血管内科,滨州 256603
收稿日期:
2025-01-13
出版日期:
2025-06-01
发布日期:
2025-06-12
通讯作者:
刘茜,Email:951942875@qq.com
基金资助:
国家自然科学基金(82100244);中国博士后基金面上项目(2022M712012);山东省医药卫生健康项目(202003040648);滨州医学院附属医院科研项目(BYFY2020KYQD40)
Application progress of left atrial and right ventricular strains in cardiovascular diseases
Wu Jianbo, Liu Qian
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2025-01-13
Online:
2025-06-01
Published:
2025-06-12
Contact:
Liu Qian, Email: 951942875@qq.com
Supported by:
National Natural Science Foundation of China (82100244); China Postdoctoral Science Foundation (2022M712012); Shandong Province Medical and Health Science and Technology Development Project (202003040648); Binzhou Medical University Scientific Foundation (BYFY2020KYQD40)
摘要:
左心房(LA)、右心室(RV)功能与心血管疾病的发生发展、预后密切相关。随着超声仪器和软件不断发展,超声影像技术逐渐成熟。斑点追踪超声心动图(STE)和心脏磁共振特征追踪技术(CMR-FT)可对多种心血管疾病的LA、RV心肌应变进行无创综合分析,改善测量LA、RV体积和结构的单一局限性,早期反映LA、RV心功能障碍及预后情况。本文基于STE和CMR-FT评估LA、RV应变在各种心血管疾病的早期结构及功能改变、危险分层、预后评估等方面的应用进展予以综述,为进一步探索LA、RV应变在心血管疾病中的应用提供依据。
吴建波 刘茜. 左心房、右心室应变在心血管疾病中的应用进展 [J]. 国际医药卫生导报, 2025, 31(11): 1806-1811.
Wu Jianbo, Liu Qian.
Application progress of left atrial and right ventricular strains in cardiovascular diseases [J]. International Medicine and Health Guidance News, 2025, 31(11): 1806-1811.
[1]王灵丽,冯馨仪,张天悦,等.基于心脏磁共振的左心房应变在心脏疾病中的应用进展[J].磁共振成像,2023,14(3):179-183.DOI:10.12015/issn.1674-8034.2023.03.033. [2]Kondratavičienė L, Tamulėnaitė E, Vasylė E, et al. Changes in left heart geometry, function, and blood serum biomarkers in patients with obstructive sleep apnea after treatment with continuous positive airway pressure[J]. Medicina (Kaunas), 2022, 58(11):1511. DOI: 10.3390/medicina58111511. [3]Zhang Y, Xing X, Zhang Z, et al. Multimodal echocardiography for assessing whether left ventricular geometry affects right atrial phasic function in patients with obstructive sleep apnea syndrome: a cross-sectional observational study[J]. J Clin Ultrasound, 2024, 52(7):883-896. DOI: 10.1002/jcu.23711. [4]Espersen C, Skaarup KG, Lassen MCH, et al. Right ventricular free wall and four-chamber longitudinal strain in relation to incident heart failure in the general population[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(3):396-403. DOI: 10.1093/ehjci/jead281. [5]Gavazzoni M, Badano LP, Cascella A, et al. Clinical value of a novel three-dimensional echocardiography-derived index of right ventricle-pulmonary artery coupling in tricuspid regurgitation[J]. J Am Soc Echocardiogr, 2023, 36(11):1154-1166.e3. DOI: 10.1016/j.echo.2023.06.014. [6]Holmberg E, Tamás É, Nylander E, et al. Right ventricular function in severe aortic stenosis assessed by echocardiography and MRI[J]. Clin Physiol Funct Imaging, 2024, 44(3):211-219. DOI: 10.1111/cpf.12867. [7]Hsu PC, Lee WH, Chu CY, et al. Prognostic role of left atrial strain and its combination index with transmitral E-wave velocity in patients with atrial fibrillation[J]. Sci Rep, 2016, 6:17318. DOI: 10.1038/srep17318. [8]Li Y, Xu Y, Tang S, et al. Left atrial function predicts outcome in dilated cardiomyopathy: fast long-axis strain analysis derived from MRI[J]. Radiology, 2022, 302(1):72-81. DOI: 10.1148/radiol.2021210801. [9]Reddy YNV, Obokata M, Egbe A, et al. Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction[J]. Eur J Heart Fail, 2019, 21(7):891-900. DOI: 10.1002/ejhf.1464. [10]Chen Y, Zhao W, Zhang N, et al. Prognostic significance of cardiac magnetic resonance in left atrial and biventricular strain analysis during the follow-up of suspected myocarditis[J]. J Clin Med, 2023, 12(2):457. DOI: 10.3390/jcm12020457. [11]Heydari B, Satriano A, Jerosch-Herold M, et al. 3-Dimensional strain analysis of hypertrophic cardiomyopathy: insights from the NHLBI International HCM Registry[J]. JACC Cardiovasc Imaging, 2023, 16(4):478-491. DOI: 10.1016/j.jcmg.2022.10.005. [12]Hussain K, Nso N, Tsourdinis G, et al. A systematic review and meta-analysis of left atrial strain in hypertrophic cardiomyopathy and its prognostic utility[J]. Curr Probl Cardiol, 2024, 49(1 Pt C):102146. DOI: 10.1016/j.cpcardiol.2023.102146. [13]Jhaveri S, Komarlu R, Worley S, et al. Left atrial strain and function in pediatric hypertrophic cardiomyopathy[J]. J Am Soc Echocardiogr, 2021, 34(9):996-1006. DOI: 10.1016/j.echo.2021.04.014. [14]Keramida K, Lazaros G, Nihoyannopoulos P. Right ventricular involvement in hypertrophic cardiomyopathy: patterns and implications[J]. Hellenic J Cardiol, 2020, 61(1):3-8. DOI: 10.1016/j.hjc.2018.11.009. [15]Meindl C, Paulus M, Poschenrieder F, et al. Left atrial strain parameters derived by echocardiography are impaired in patients with acute myocarditis and preserved systolic left ventricular function[J]. Int J Cardiovasc Imaging, 2023, 39(6):1157-1165. DOI: 10.1007/s10554-023-02827-9. [16]Monte IP, Faro DC, Trimarchi G, et al. Left atrial strain imaging by speckle tracking echocardiography: the supportive diagnostic value in cardiac amyloidosis and hypertrophic cardiomyopathy[J]. J Cardiovasc Dev Dis, 2023, 10(6):261. DOI: 10.3390/jcdd10060261. [17]Muresan ID, Zlibut A, Orzan RI, et al. Characterization of left atrial geometry and function in patients with hypertrophic cardiomyopathy: a cardiac magnetic resonance imaging study[J]. Eur Rev Med Pharmacol Sci, 2022, 26(12):4318-4330. DOI: 10.26355/eurrev_202206_29071. [18]Purwowiyoto SL, Halomoan R. Highlighting the role of global longitudinal strain assessment in valvular heart disease[J]. Egypt Heart J, 2022, 74(1):46. DOI: 10.1186/s43044-022-00283-9. [19]Qian Y, Zhao X, Chen BH, et al. Right ventricular global strain in patients with hypertrophic cardiomyopathy with and without right ventricular hypertrophy[J]. Eur J Radiol, 2023, 169:111148. DOI: 10.1016/j.ejrad.2023.111148. [20]Al-Biltagi M, Elrazaky O, Mawlana W, et al. Tissue Doppler, speckling tracking and four-dimensional echocardiographic assessment of right ventricular function in children with dilated cardiomyopathy[J]. World J Clin Pediatr, 2022, 11(1):71-84. DOI: 10.5409/wjcp.v11.i1.71. [21]Anastasiou V, Papazoglou AS, Moysidis DV, et al. The prognostic value of right ventricular longitudinal strain in heart failure: a systematic review and meta-analysis[J]. Heart Fail Rev, 2023, 28(6):1383-1394. DOI: 10.1007/s10741-023-10329-y. [22]Chen X, Chen R, Luo X, et al. The prognostic value of the left atrial strain rate determined using cardiovascular magnetic resonance feature tracking imaging in patients with severe idiopathic dilated cardiomyopathy[J]. Cardiovasc Diagn Ther, 2022, 12(6):767-778. DOI: 10.21037/cdt-22-305. [23]Ji M, Wu W, He L, et al. Right ventricular longitudinal strain in patients with heart failure[J]. Diagnostics (Basel), 2022, 12(2):445. DOI: 10.3390/diagnostics12020445. [24]Liu T, Gao Y, Wang H, et al. Association between right ventricular strain and outcomes in patients with dilated cardiomyopathy[J]. Heart, 2021, 107(15):1233-1239. DOI: 10.1136/heartjnl-2020-317949. [25]Vîjîiac A, Onciul S, Guzu C, et al. The prognostic value of right ventricular longitudinal strain and 3D ejection fraction in patients with dilated cardiomyopathy[J]. Int J Cardiovasc Imaging, 2021, 37(11):3233-3244. DOI: 10.1007/s10554-021-02322-z. [26]Xiang X, Song Y, Zhao K, et al. Incremental prognostic value of left atrial and biventricular feature tracking in dilated cardiomyopathy: a long-term study[J]. J Cardiovasc Magn Reson, 2023, 25(1):76. DOI: 10.1186/s12968-023-00967-4. [27]Zairi I, Bejar MA, Ben Mrad I, et al. Prognostic value of atrial strain in non-ischemic dilated cardiomyopathy[J]. Tunis Med, 2021, 99(6):644-651. [28]Barki M, Losito M, Caracciolo MM, et al. Left atrial strain in acute heart failure: clinical and prognostic insights[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(3):315-324. DOI: 10.1093/ehjci/jead287. [29]Park JH, Hwang IC, Park JJ, et al. Left atrial strain to predict stroke in patients with acute heart failure and sinus rhythm[J]. J Am Heart Assoc, 2021, 10(13):e020414. DOI: 10.1161/JAHA.120.020414. [30]Shah SJ, Lam CSP, Svedlund S, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF[J]. Eur Heart J, 2018, 39(37):3439-3450. DOI: 10.1093/eurheartj/ehy531. [31]Ting PC, Chou AH, Chien-Chia Wu V, et al. Relationship between right ventricular function and atrial fibrillation after cardiac surgery[J]. J Cardiothorac Vasc Anesth, 2017, 31(5):1663-1671. DOI: 10.1053/j.jvca.2017.05.018. [32]Yano M, Egami Y, Ukita K, et al. Clinical impact of right ventricular-pulmonary artery uncoupling on predicting the clinical outcomes after catheter ablation in persistent atrial fibrillation patients[J]. Int J Cardiol Heart Vasc, 2022, 39:100991. DOI: 10.1016/j.ijcha.2022.100991. [33]Liu Q, Hu Y, Chen W, et al. Evaluation of right ventricular longitudinal strain in pediatric patients with pulmonary hypertension by two-dimensional speckle-tracking echocardiography[J]. Front Pediatr, 2023, 11:1189373. DOI: 10.3389/fped.2023.1189373. [34]Usuku H, Takashio S, Yamamoto E, et al. Prognostic value of right ventricular global longitudinal strain in transthyretin amyloid cardiomyopathy[J]. J Cardiol, 2022, 80(1):56-63. DOI: 10.1016/j.jjcc.2022.02.010. [35]Wang Y, Guo D, Liu M, et al. Assessment of right ventricular remodeling in chronic thromboembolic pulmonary hypertension by 2D-speckle tracking echocardiography: a comparison with cardiac magnetic resonance[J]. Front Cardiovasc Med, 2022, 9:999389. DOI: 10.3389/fcvm.2022.999389. [36]Zhang L, Dai J, Zhang P, et al. Right ventricular end-systolic remodeling index on cardiac magnetic resonance imaging: comparison with other functional markers in patients with chronic thromboembolic pulmonary hypertension[J]. Quant Imaging Med Surg, 2022, 12(2):894-905. DOI: 10.21037/qims-21-385. [37]Shaikh AY, Maan A, Khan UA, et al. Speckle echocardiographic left atrial strain and stiffness index as predictors of maintenance of sinus rhythm after cardioversion for atrial fibrillation: a prospective study[J]. Cardiovasc Ultrasound, 2012, 10:48. DOI: 10.1186/1476-7120-10-48. [38]Ogawa M, Kuwajima K, Yamane T, et al. Effect of right ventricular free wall longitudinal strain on all-cause death in patients with isolated severe tricuspid regurgitation and atrial fibrillation[J]. Front Cardiovasc Med, 2023, 10:1188005. DOI: 10.3389/fcvm.2023.1188005. [39]Tan Y, Li Y, Deng W, et al. Prognostic implications of left atrial strain in bicuspid aortic valve with chronic aortic regurgitation[J]. J Am Heart Assoc, 2024, 13(6):e032770. DOI: 10.1161/JAHA.123.032770. [40]Winkler NE, Anwer S, Rumpf PM, et al. Left atrial pump strain predicts long-term survival after transcatheter aortic valve implantation[J]. Int J Cardiol, 2024, 395:131403. DOI: 10.1016/j.ijcard.2023.131403. [41]Gao L, Lin Y, Ji M, et al. Clinical utility of three-dimensional speckle-tracking echocardiography in heart failure[J]. J Clin Med, 2022, 11(21):6307. DOI: 10.3390/jcm11216307. [42]Al Saikhan L, Park C, Tillin T, et al. Does 3D-speckle tracking echocardiography improve prediction of major cardiovascular events in a multi-ethnic general population? A Southall and Brent Revisited (SABRE) cohort study[J]. PLoS One, 2023, 18(6):e0287173. DOI: 10.1371/journal.pone.0287173. [43]Mutluer FO, Bowen DJ, van Grootel RWJ, et al. Left ventricular strain values using 3D speckle-tracking echocardiography in healthy adults aged 20 to 72 years[J]. Int J Cardiovasc Imaging, 2021, 37(4):1189-1201. DOI: 10.1007/s10554-020-02100-3. [44]Meng Y, Zhu S, Xie Y, et al. Prognostic value of right ventricular 3D speckle-tracking strain and ejection fraction in patients with HFpEF[J]. Front Cardiovasc Med, 2021, 8:694365. DOI: 10.3389/fcvm.2021.694365. |
[1] | 赵洲 刘为朋 李宗睿 王睿智 胡宝光. 高血压大鼠模型的研究现状 [J]. 国际医药卫生导报, 2025, 31(9): 1465-1470. |
[2] | 昝兴淳. 通督调神针刺治疗脑卒中后吞咽障碍的研究进展与展望 [J]. 国际医药卫生导报, 2025, 31(9): 1470-1474. |
[3] | 张婷 郭淋 张驰 付瑞 崔治权 康晓刚.
青少年双相情感障碍患者血脂水平与区域性脑结构的相关性研究 [J]. 国际医药卫生导报, 2025, 31(9): 1538-1543. |
[4] | 罗婷 严婷 何蕊. 基于超声弹性成像和MRI构建早期乳腺癌介入消融效果的预测模型 [J]. 国际医药卫生导报, 2025, 31(8): 1234-1239. |
[5] | 李强. 超声引导下射频消融治疗甲状腺微小乳头状癌的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1258-1260. |
[6] | 洪金全 黄震宇 黄惠炆 黄豪博. 胸苷酸合成酶基因在肿瘤发生发展中的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1260-1265. |
[7] | 蒋萌 赵静如 刘惠 刘庆新. 自噬与缺血性脑血管疾病的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1265-1269. |
[8] | 刘汉清 孙银萍 赵强 任帅. MSI-H/dMMR亚组局部晚期结直肠癌患者新辅助免疫治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1270-1274. |
[9] | 朱鹏 唐文玲 覃刚. 结直肠癌中微小RNA功能及临床价值进展 [J]. 国际医药卫生导报, 2025, 31(6): 886-890. |
[10] | 潘文昕 姜伟炜. 结肠镜检查时机对缺血性结肠炎患者预后影响的研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 914-917. |
[11] | 张子怡 孙大康. TRIM22抗HIV-1作用机制研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 918-922. |
[12] | 易伟 米倩倩 赵洁 李博宇 王丹. 彩色多普勒血流成像在球后血流动力学检测中的应用 [J]. 国际医药卫生导报, 2025, 31(6): 922-926. |
[13] | 陈秀珠 张凯 韦岩笑 丛晨阳. 甲状腺相关眼病的药物治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 927-929. |
[14] | 顾芸芸 顾进 孙敦坡 王益松 李静. 探讨尿酸/白蛋白比值与慢性肾病腹膜透析患者发生心脑血管事件的关系 [J]. 国际医药卫生导报, 2025, 31(6): 1020-1026. |
[15] | 李晓童 于胜强. 肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||