国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (8): 1312-1316.DOI: 10.3760/cma.j.issn.1007-1245.2024.08.017
代谢组学在感染性疾病中的研究进展
王霞 赛海芳
青岛大学附属威海市中心医院感染管理科,威海 264400
收稿日期:
2023-08-31
出版日期:
2024-04-15
发布日期:
2024-05-05
通讯作者:
赛海芳,Email:365753353@qq.com
Research progress of metabolomics in infectious diseases
Wang Xia, Sai Haifang
Department of Infection Management, Weihai Central Hospital Affiliated to Qingdao University, Weihai 264400, China
Received:
2023-08-31
Online:
2024-04-15
Published:
2024-05-05
Contact:
Sai Haifang, Email: 365753353@qq.com
摘要:
感染性疾病是全球严重的公共卫生问题之一,对人类健康危害性极大。近年来,代谢组学逐步应用于感染性疾病的研究中,以了解小分子水平的宿主-病原体相互作用,通过基于核磁共振(NMR)或基于质谱(MS)的代谢组学筛选疾病特异性生物标志物,为预防疾病及探索病因、发病机制等方面带来新的机遇。本综述讨论了代谢组学技术在生物标志物筛选和病毒、细菌、寄生虫感染等感染性疾病中代谢物的发现以及免疫代谢组学的应用,以期为感染性疾病的诊断研究提供新的依据。
王霞 赛海芳.
代谢组学在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1312-1316.
Wang Xia, Sai Haifang.
Research progress of metabolomics in infectious diseases [J]. International Medicine and Health Guidance News, 2024, 30(8): 1312-1316.
[1] 包晨,刘超,刘倩,等.泛凋亡和感染性疾病研究进展[J].华中科技大学学报(医学版),2023,52(4):569-573.DOI:10.3870/j.issn.1672-0741.2023.04.023. [2] 李祥,宁永忠.感染性疾病抢先预防研究进展[J].中国感染控制杂志,2023,22(7):853-855.DOI:10.12138/j.issn.1671- 9638.20233640. [3] 杜丽敏,张洁,赵凤芹.中性粒细胞载脂蛋白在感染性疾病应用的临床进展[J].中国实验诊断学,2023,27(5):626-631.DOI:10.3969/j.issn.1007-4287.2023.05.030. [4] Tounta V, Liu Y, Cheyne A, et al. Metabolomics in infectious diseases and drug discovery[J]. Mol Omics, 2021, 17(3):376-393. DOI: 10.1039/d1mo00017a. [5] Vinayavekhin N, Homan EA, Saghatelian A. Exploring disease through metabolomics[J]. ACS Chem Biol, 2010, 5(1):91-103. DOI: 10.1021/cb900271r. [6] Elias C, Nkengasong JN, Qadri F. Emerging infectious diseases - learning from the past and looking to the future[J]. N Engl J Med, 2021, 384(13):1181-1184. DOI: 10.1056/NEJMp2034517. [7] Fu J, Zhu F, Xu CJ, et al. Metabolomics meets systems immunology[J]. EMBO Rep, 2023, 24(4):e55747. DOI: 10.15252/embr.202255747. [8] Lydon EC, Ko ER, Tsalik EL. The host response as a tool for infectious disease diagnosis and management[J]. Expert Rev Mol Diagn, 2018, 18(8):723-738. DOI: 10.1080/14737159.2018.1493378. [9] Babu M, Snyder M. Multi-omics profiling for health[J]. Mol Cell Proteomics, 2023, 22(6):100561. DOI: 10.1016/j.mcpro.2023.100561. [10] Pacchiarotta T, Deelder AM, Mayboroda OA. Metabolomic investigations of human infections[J]. Bioanalysis, 2012, 4(8):919-925. DOI: 10.4155/bio.12.61. [11] Kim DH, Creek DJ. What role can metabolomics play in the discovery and development of new medicines for infectious diseases?[J]. Bioanalysis, 2015, 7(6):629-631. DOI: 10.4155/bio.15.5. [12] Nguyen TD, Lan Y, Kane SS, et al. Single-cell mass spectrometry enables insight into heterogeneity in infectious disease[J]. Anal Chem, 2022, 94(30):10567-10572. DOI: 10.1021/acs.analchem.2c02279. [13] Quinn RA. Integrating microbiome and metabolome data to understand infectious airway disease[J]. Am J Respir Crit Care Med, 2017, 196(7):806-807. DOI: 10.1164/rccm.201704-0671ED. [14] Zurfluh S, Baumgartner T, Meier MA, et al. The role of metabolomic markers for patients with infectious diseases: implications for risk stratification and therapeutic modulation[J]. Expert Rev Anti Infect Ther, 2018, 16(2):133-142. DOI: 10.1080/14787210.2018. 1426460. [15] Williams AA, Sitole LJ, Meyer D. HIV/HAART-associated oxidative stress is detectable by metabonomics[J]. Mol Biosyst, 2017, 13(11):2202-2217. DOI: 10.1039/c7mb00336f. [16] Sitole LJ, Williams AA, Meyer D. Metabonomic analysis of HIV-infected biofluids[J]. Mol Biosyst, 2013, 9(1):18-28. DOI: 10.1039/c2mb25318f. [17] Sitole LJ, Tugizimana F, Meyer D. Multi-platform metabonomics unravel amino acids as markers of HIV/combination antiretroviral therapy-induced oxidative stress[J]. J Pharm Biomed Anal, 2019, 176:112796. DOI: 10.1016/j.jpba.2019.112796. [18] Ivanov AV, Valuev-Elliston VT, Ivanova ON, et al. Oxidative stress during HIV infection: mechanisms and consequences[J]. Oxid Med Cell Longev, 2016,2016:8910396. DOI: 10.1155/2016/8910396. [19] Guo H, Wang Q, Ghneim K, et al. Multi-omics analyses reveal that HIV-1 alters CD4+ T cell immunometabolism to fuel virus replication[J]. Nat Immunol, 2021, 22(4):423-433. DOI: 10.1038/s41590-021-00898-1. [20] Mann AE, O'Connell LM, Osagie E, et al. Impact of HIV on the oral microbiome of children living in Sub-Saharan Africa, determined by using an rpoC gene fragment metataxonomic approach[J]. Microbiol Spectr, 2023, 11(4):e0087123. DOI: 10.1128/spectrum.00871-23. [21] Yu M, Zhu Y, Cong Q, et al. Metabonomics research progress on liver diseases[J]. Can J Gastroenterol Hepatol, 2017,2017:8467192. DOI: 10.1155/2017/8467192. [22] Gouveia LR, Santos JC, Silva RD, et al. Diagnosis of coinfection by schistosomiasis and viral hepatitis B or C using 1H NMR-based metabonomics[J]. PLoS One, 2017, 12(8):e0182196. DOI: 10.1371/journal.pone.0182196. [23] Hou Q, Duan ZJ. Metabonomic window into hepatitis B virus-related hepatic diseases[J]. World J Hepatol, 2016, 8(1):1-8. DOI: 10.4254/wjh.v8.i1.1. [24] Huang G, Xie S, Wang M, et al. Metabolite profiling analysis of hepatitis B virus-induced liver cirrhosis patients with minimal hepatic encephalopathy using gas chromatography-time-of-flight mass spectrometry and ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry[J]. Biomed Chromatogr, 2023, 37(1):e5529. DOI: 10.1002/bmc.5529. [25] Iannacone M, Guidotti LG. Immunobiology and pathogenesis of hepatitis B virus infection[J]. Nat Rev Immunol, 2022, 22(1):19-32. DOI: 10.1038/s41577-021- 00549-4. [26] 杨逸鑫,彭芳.基于代谢组学的中医药防治肝纤维化的研究进展[J].中南药学,2023,21(1):155-160.DOI:10.7539/j.issn.1672-2981.2023.01.025. [27] Nomair AM, Madkour MA, Shamseya MM, et al. Profiling of plasma metabolomics in patients with hepatitis C-related liver cirrhosis and hepatocellular carcinoma[J]. Clin Exp Hepatol, 2019, 5(4):317-326. DOI: 10.5114/ceh.2019.89478. [28] Sarfaraz MO, Myers RP, Coffin CS, et al. A quantitative metabolomics profiling approach for the noninvasive assessment of liver histology in patients with chronic hepatitis C[J]. Clin Transl Med, 2016, 5(1):33. DOI: 10.1186/s40169-016-0109-2. [29] 钟凯苑,杨秋萍,郭微,等.不同孕周母亲及其新生儿血氨基酸代谢谱变化特点[J].国际医药卫生导报,2021,27(9):1316-1321.DOI:10.3760/cma.j.issn.1007-1245.2021. 09.012. [30] Shanmuganathan M, Sarfaraz MO, Kroezen Z, et al. A cross-platform metabolomics comparison identifies serum metabolite signatures of liver fibrosis progression in chronic hepatitis C patients[J]. Front Mol Biosci, 2021, 8:676349. DOI: 10.3389/fmolb.2021.676349. [31] Yang J, Wang D, Li Y, et al. Metabolomics in viral hepatitis: advances and review[J]. Front Cell Infect Microbiol, 2023, 13:1189417. DOI: 10.3389/fcimb.2023.1189417. [32] Jia H, Liu C, Li D, et al. Metabolomic analyses reveal new stage-specific features of COVID-19[J]. Eur Respir J, 2022, 59(2):2100284. DOI: 10.1183/13993003.00284-2021. [33] 马坤,王道斌,李树军.支气管肺泡灌洗液中细胞学对儿童肺部疾病诊治研究进展[J].国际医药卫生导报,2023,29(8):1049-1052.DOI:10.3760/cma.j.issn.1007-1245.2023. 08.004. [34] Byeon SK, Madugundu AK, Garapati K, et al. Development of a multiomics model for identification of predictive biomarkers for COVID-19 severity: a retrospective cohort study[J]. Lancet Digit Health, 2022, 4(9):e632-e645. DOI: 10.1016/S2589-7500(22)00112-1. [35] Arjmand B, Alavi-Moghadam S, Parhizkar-Roudsari P, et al. Metabolomics signatures of SARS-CoV-2 infection[J]. Adv Exp Med Biol, 2022,1376:45-59. DOI: 10.1007/5584_2021_674. [36] Sindelar M, Stancliffe E, Schwaiger-Haber M, et al. Longitudinal metabolomics of human plasma reveals prognostic markers of COVID-19 disease severity[J]. Cell Rep Med, 2021, 2(8):100369. DOI: 10.1016/j.xcrm.2021. 100369. [37] Salinas JL, Kissinger JC, Jones DP, et al. Metabolomics in the fight against malaria[J]. Mem Inst Oswaldo Cruz, 2014, 109(5):589-597. DOI: 10.1590/0074-0276140043. [38] Mahmud I, Garrett TJ. Mass spectrometry techniques in emerging pathogens studies: COVID-19 perspectives[J]. J Am Soc Mass Spectrom, 2020, 31(10):2013-2024. DOI: 10.1021/jasms.0c00238. [39] Wang X, Xu G, Liu X, et al. Multiomics: unraveling the panoramic landscapes of SARS-CoV-2 infection[J]. Cell Mol Immunol, 2021, 18(10):2313-2324. DOI: 10.1038/s41423-021-00754-0. [40] du Preez I, Luies L, Loots DT. The application of metabolomics toward pulmonary tuberculosis research[J]. Tuberculosis (Edinb), 2019, 115:126-139. DOI: 10.1016/j.tube.2019.03.003. [41] Luies L, du Preez I, Loots DT. The role of metabolomics in tuberculosis treatment research[J]. Biomark Med, 2017, 11(11):1017-1029. DOI: 10.2217/bmm-2017-0141. [42] Chandra P, Coullon H, Agarwal M, et al. Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection[J]. J Clin Invest, 2022, 132(3):e152509. DOI: 10.1172/JCI152509. [43] Tsamouri MM, Durbin-Johnson BP, Culp WTN, et al. Untargeted metabolomics identify a panel of urinary biomarkers for the diagnosis of urothelial carcinoma of the bladder, as compared to urolithiasis with or without urinary tract infection in dogs[J]. Metabolites, 2022, 12(3):200. DOI: 10.3390/metabo12030200. [44] Lussu M, Camboni T, Piras C, et al. 1H NMR spectroscopy-based metabolomics analysis for the diagnosis of symptomatic E. coli-associated urinary tract infection (UTI)[J]. BMC Microbiol, 2017, 17(1):201. DOI: 10.1186/s12866-017-1108-1. [45] Nevedomskaya E, Pacchiarotta T, Artemov A, et al. (1)H NMR-based metabolic profiling of urinary tract infection: combining multiple statistical models and clinical data[J]. Metabolomics, 2012, 8(6):1227-1235. DOI: 10.1007/s11306-012-0411-y. [46] Lam CW, Law CY, Sze KH, et al. Quantitative metabolomics of urine for rapid etiological diagnosis of urinary tract infection: evaluation of a microbial-mammalian co-metabolite as a diagnostic biomarker[J]. Clin Chim Acta, 2015, 438:24-28. DOI: 10.1016/j.cca.2014.07.038. |
[1] | 肖正平 李保松 张智睿 蒋宏. 基于Cajal间质细胞治疗慢传输型便秘患者的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1409-1414. |
[2] | 刘志强 张翠 董文敬 刘振 孙经武. 心肌纤维化与AMPK-mTOR-ULK1信号通路研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1297-1300. |
[3] | 赵博 李思维 邢甜 高萍 朱宏喆 李敏. TRPV1通道在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1057-1062. |
[4] | 崔筱 刘亮. 辣椒素受体在腹泻型肠易激综合征发病中的作用 [J]. 国际医药卫生导报, 2024, 30(7): 1066-1070. |
[5] | 王苗苗 张睿哲 徐磊 武寒 吴淑华. 加权基因共表达网络分析结肠癌免疫相关生物标志物 [J]. 国际医药卫生导报, 2024, 30(7): 1079-1086. |
[6] | 李小妹 卢健 覃莉 凌燕兰. 卵巢过度刺激综合征患者的护理干预研究现状 [J]. 国际医药卫生导报, 2024, 30(7): 1199-1202. |
[7] | 贺恒奕 张小伟 陈宁杰. 吸烟对肩袖损伤及预后的影响 [J]. 国际医药卫生导报, 2024, 30(5): 710-712. |
[8] | 侯长冉 姜京汝 花义同. 软骨素聚合因子在乳腺癌中的研究进展 [J]. 国际医药卫生导报, 2023, 29(9): 1201-1204. |
[9] | 杨玲瑜 金勇君. 白细胞相关免疫球蛋白样受体1在糖尿病中的研究现状 [J]. 国际医药卫生导报, 2023, 29(24): 3542-3545. |
[10] | 陈冠宏 于茗子 方雨涵 程雪峰 李奇 李晨. 表观遗传与miRNA在抑郁症中的作用 [J]. 国际医药卫生导报, 2023, 29(13): 1782-1786. |
[11] | 李诗华, 周慧, 姚俊. miRNA在鼻咽癌中的研究进展[J]. 国际医药卫生导报, 2022, 28(8): 1168-1171. |
[12] | 周明轩, 李建厂. 藤梨根在恶性肿瘤中的研究进展[J]. 国际医药卫生导报, 2022, 28(8): 1176-1179. |
[13] | 张瑀琼, 崔宏伟, 于蕾, 李国华, 吕新亮. 尪痹的中医证型与促炎因子的相关性研究进展[J]. 国际医药卫生导报, 2022, 28(7): 907-911. |
[14] | 梁雁冰, 陈金兰, 苏郑明. 髓质海绵肾的诊断研究进展[J]. 国际医药卫生导报, 2022, 28(6): 759-761. |
[15] | 赵文镇, 林宇宁. LINC01836是一种新的结直肠癌诊断和预后的生物标志物 [J]. 国际医药卫生导报, 2022, 28(3): 363-367. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||