[1] Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030 [J]. PLoS Medicine, 2006, 3(11): e442. DOI: 10.1371/journal.pmed.0030442.
[2] Friedrich MJ. Depression is the leading cause of disability around the world[J]. JAMA, 2017, 317(15): 1517. DOI: 10.1001/jama.2017.3826.
[3] Ladd-Acosta C, Fallin MD. The role of epigenetics in genetic and environmental epidemiology[J]. Epigenomics, 2016, 8(2): 271-283. DOI:10.2217/epi.15.102.
[4] Chistiakov DA, Bobryshev YV, Chekhonin VP. Epigenetic alterations in DNA and histone modifications caused by depression and antidepressant drugs: lessons from the rodent models[J]. Curr Pharm Des, 2017, 23(44): 6828-6840. DOI: 10.2174/1381612823666171031110734.
[5] Kawatake-Kuno A, Murai T, Uchida S. The molecular basis of depression: implications of sex-related differences in epigenetic regulation[J]. Front Mol Neurosci, 2021, 14: 708004. DOI: 10.3389/fnmol.2021.708004.
[6] 姚开云,丁虹琬,曹琳玉,等. 组蛋白去乙酰化酶抑制剂的抗抑郁前景[J]. 药学学报,2021,56(1): 29-36. DOI: 10.16438/j.0513-4870.2020-1217.
[7] 李海燕,伏箫燕,崔婷,等. 组蛋白乙酰化调控异常与大鼠抑郁行为的关系研究[J]. 中国药理学通报,2017,33(1): 52-57,58. DOI: 10.3969/j.issn.1001-1978.2017.01.010.
[8] 张欢,郭改艳,黄娜,等. 染色域Y样蛋白介导的组蛋白巴豆酰化与抑郁小鼠模型中NGF和炎症因子水平及神经功能紊乱的关系[J]. 现代生物医学进展,2022,22(13): 2422-2426. DOI: 10.13241/j.cnki.pmb.2022.13.004.
[9] Alural B, Genc S, Haggarty SJ. Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: past, present, and future[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 73: 87-103. DOI: 10.1016/j.pnpbp.2016.03.010.
[10] 李金艳. 舍曲林对产后抑郁患者的效果及外周血相关miRNA表达与神经递质水平的影响[J]. 国际精神病学杂志,2021,48(5): 836-839.
[11] 孔令明,姚高峰,何明骏,等. 抗抑郁药对自杀意念的影响及其与miRNA表达水平的关系[J]. 解放军预防医学杂志,2019,37(7): 9-11,15.
[12] 徐小红,余正和,李静,等. miRNA132在抑郁症患者及慢性不可预知温和应激抑郁模型大鼠中的表达[J]. 中国医学科学院学报,2020,42(5): 573-577. DOI: 10.3881/j.issn.1000-503X.12958.
[13] Yuan H, Mischoulon D, Fava M, et al. Circulating microRNAs as biomarkers for depression: many candidates, few finalists[J]. J Affect Disord, 2018, 233: 68-78. DOI: 10.1016/j.jad.2017.06.058.
[14] Kocerha J, Dwivedi Y, Brennand KJ. Noncoding RNAs and neurobehavioral mechanisms in psychiatric disease[J]. Mol Psychiatry, 2015, 20(6): 677-684. DOI: 10.1038/mp.2015.30.
[15] Shi Y, Wang Q, Song R, et al. Non-coding RNAs in depression: promising diagnostic and therapeutic biomarkers[J]. EBioMedicine, 2021, 71: 103569. DOI: 10.1016/j.ebiom.2021.103569.
[16] Fries GR, Zhang W, Benevenuto D, et al. MicroRNAs in Major Depressive Disorder[J]. Adv Exp Med Biol, 2019, 1118: 175-190. DOI: 10.1007/978-3-030-05542-4_9.
[17] Czarny P, Białek K, Ziółkowska S, et al. The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder[J]. J Pers Med, 2021, 11(3): 167. DOI: 10.3390/jpm11030167.
[18] Wei ZX, Xie GJ, Mao X, et al. Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis[J]. Neuropsychopharmacology, 2020, 45(6): 1050-1058. DOI: 10.1038/s41386-020-0622-2.
[19] Fiori LM, Kos A, Lin R, et al. miR-323a regulates ERBB4 and is involved in depression[J]. Mol Psychiatry, 2021, 26(8): 4191-4204. DOI: 10.1038/s41380-020-00953-7.
[20] Czarny P, Białek K, Ziółkowska S, et al. The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder[J]. J Pers Med, 2021, 11(3): 167. DOI: 10.3390/jpm11030167.
[21] 张巧丽,过伟,张理义,等. 抑郁症患者药物治疗前后单核细胞中microRNA表达水平变化与抑郁症状的关系[J]. 解放军医学杂志,2015,40(2): 128-132. DOI: 10.11855/j.issn.0577-7402.2015.02.08.
[22] Mora C, Zonca V, Riva MA, et al. Blood biomarkers and treatment response in major depression[J]. Expert Rev Mol Diagn, 2018, 18(6): 513-529. DOI: 10.1080/14737159.2018.1470927.
[23] 邵秋静,冀紫阳,董娇,等. 外周血中微RNA-16和微RNA-124表达水平对抑郁症患者治疗效果的影响[J]. 新乡医学院学报,2022,39(4): 318-322,329. DOI: 10.7683/xxyxyxb.2022.04.004.
[24] Cherian K, Schatzberg AF, Keller J. HPA axis in psychotic major depression and schizophrenia spectrum disorders: Cortisol, clinical symptomatology, and cognition[J]. Schizophrenia Research, 2019, 213: 72-79. DOI: 10.1016/j.schres.2019.07.003.
[25] Shen J, Li Y, Qu C, et al. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus[J]. J Affect Disord, 2019, 248: 81-90. DOI: 10.1016/j.jad.2019.01.031.
[26] Li C, Wang F, Miao P, et al. miR-138 Increases Depressive-Like Behaviors by Targeting SIRT1 in Hippocampus[J]. Neuropsychiatr Dis Treat, 2020, 16: 949-957. DOI: 10.2147/NDT.S237558.
[27] Tao Y, Gao K, Shen B, et al. MicroRNA-135b-5p downregulation causes antidepressant effects by regulating SIRT1 expression[J]. Biochem Genet, 2021, 59(6): 1582-1598. DOI: 10.1007/s10528-021-10076-5.
[28] 程艳伟. CircPTK2靶向结合miR-182-5p调控BDNF表达改善抑郁样行为的作用及机制研究[D]. 吉林大学, 2022. DOI: 10.27162/d.cnki.gjlin.2022.007064.
[29] Su M, Hong J, Zhao Y, et al. MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA-132 in rats with depression[J]. Mol Med Rep, 2015, 12(4): 5399-5406. DOI: 10.3892/mmr.2015.4104.
[30] Dwivedi Y. microRNA-124: A putative therapeutic target and biomarker for major depression[J]. Expert Opin Ther Targets, 2017, 21(7): 653-656. DOI: 10.1080/14728222. 2017.1328501.
[31] 田涛,段芙蓉,戴立磊,等. 抑郁症患者BDNF、IL-6及miR-124的表达与疾病严重程度关系研究[J]. 精神医学杂志,2022,35(6):454-457. DOI: 10.3969/j.issn.2095-9346. 2022.06.013.
[32] Roy B, Dunbar M, Shelton RC, et al. Identification of microRNA-124-3p as a putative epigenetic signature of major depressive disorder[J]. Neuropsychopharmacology, 2017, 42(4): 864-875. DOI: 10.1038/npp.2016.175.
[33] Tang C, Hu J. HDAC1-Mediated microRNA-124-5p regulates NPY to affect learning and memory abilities in rats with depression[J]. Nanoscale Res Lett, 2021, 16(1): 28. DOI: 10.1186/s11671-021-03477-3.
[34] Periyasamy P, Thangaraj A, Guo ML, et al. Epigenetic promoter DNA methylation of miR-124 promotes HIV-1 tat-mediated microglial activation via MECP2-STAT3 axis[J]. J Neurosci, 2018, 38(23): 5367-5383. DOI: 10.1523/JNEUROSCI.3474-17.2018.
[35] 曾端. miR-124及其靶基因在抑郁症及抗抑郁疗效中的作用[D]. 上海交通大学, 2020. DOI: 10.27307/d.cnki.gsjtu.2020.000636.
[36] Ding L, Styblo M, Drobna Z, et al. Expression of the Longest RGS4 splice variant in the prefrontal cortex is associated with single nucleotide polymorphisms in schizophrenia patients[J]. Front Psychiatry, 2016, 7: 26. DOI: 10.3389/fpsyt.2016.00026.
[37] Jung S, Son H, Lee DH, et al. Decreased levels of RGS4 in the paraventricular nucleus facilitate GABAergic inhibition during the acute stress response[J]. Biochem Biophys Res Commun, 2016, 472(1): 276-280. DOI: 10.1016/j.bbrc.2016.02.108.
[38] Peña CJ, Nestler EJ. Progress in epigenetics of depression[J]. Prog Mol Biol Transl Sci, 2018, 157: 41-66. DOI: 10.1016/bs.pmbts.2017.12.011.
[39] Fan B, Luk AOY, Chan JCN, et al. MicroRNA and diabetic complications- a clinical perspective[J]. Antioxid Redox Signal, 2018, 29(11): 1041-1063. DOI: 10.1089/ars.2017.7318.
|