国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (22): 3751-3756.DOI: 10.3760/cma.j.issn.1007-1245.2024.22.013
维奈克拉治疗白血病耐药的分子途径
颜嘉欣 于文征 初文慧 仉紫薇
滨州医学院附属医院血液内科,滨州 256603
收稿日期:
2024-05-13
出版日期:
2024-11-15
发布日期:
2024-11-13
通讯作者:
于文征,Email:bzywz2009@163.com
基金资助:
北京吴阶平医学基金会科研资助项目
Molecular pathways of leukemia resistance to treatment with venetoclax
Yan Jiaxin, Yu Wenzheng, Chu Wenhui, Zhang Ziwei
Department of Hematology, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2024-05-13
Online:
2024-11-15
Published:
2024-11-13
Contact:
Yu Wenzheng, Email: bzywz2009@163.com
Supported by:
Beijing Wu Jieping Medical Foundation Research Grant Program
摘要:
维奈克拉(VEN)可以靶向B细胞淋巴瘤(BCL)-2蛋白,通过刺激线粒体凋亡通路诱导癌细胞凋亡,是目前白血病患者个性化治疗方案中的重要组成部分。随着近年来VEN应用范围的扩大,出现了一些VEN耐药的病例,给临床治疗带来了新的挑战。对VEN的耐药包括遗传和非遗传机制,如抗凋亡蛋白髓细胞白血病-1(MCL-1)与BCL-XL表达增加、BCL-2家族蛋白结构突变、BAX基因突变和缺失、其他癌基因如肿瘤蛋白P53(TP53)突变、FMS样酪氨酸激酶3(FLT3)内部串联重复序列(ITD)扩增、白血病干细胞(LSCs)线粒体代谢异常、线粒体形态和功能改变、肿瘤微环境影响、VEN代谢等。该文就VEN治疗白血病耐药机制进行综述和总结,并介绍了如何克服这些耐药机制的概念和策略。
颜嘉欣 于文征 初文慧 仉紫薇.
维奈克拉治疗白血病耐药的分子途径 [J]. 国际医药卫生导报, 2024, 30(22): 3751-3756.
Yan Jiaxin, Yu Wenzheng, Chu Wenhui, Zhang Ziwei.
Molecular pathways of leukemia resistance to treatment with venetoclax [J]. International Medicine and Health Guidance News, 2024, 30(22): 3751-3756.
[1] Sullivan GP, Flanagan L, Rodrigues DA,et al. The path to venetoclax resistance is paved with mutations, metabolism, and more[J]. Sci Transl Med, 2022,14(674):eabo6891.DOI: 10.1126/scitranslmed.abo6891. [2] Pei S, Pollyea DA, Gustafson A,et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia[J]. Cancer Discov, 2020,10(4):536-551.DOI: 10.1158/2159-8290.CD-19-0710. [3] Guièze R, Liu VM, Rosebrock D,et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies[J]. Cancer Cell, 2019,36(4):369-384.e13.DOI: 10.1016/j.ccell.2019.08.005. [4] Thijssen R, Roberts AW. Venetoclax in lymphoid malignancies: new insights, more to learn[J]. Cancer Cell, 2019 ,36(4):341-343.DOI: 10.1016/j.ccell.2019.09.008. [5] Shah NP, Nicoll JM, Nagar B,et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia[J]. Cancer Cell, 2002,2(2):117-125. DOI: 10.1016/s1535-6108(02)00096-x. [6] Nachmias B, Aumann S, Haran A,et al. Venetoclax resistance in acute myeloid leukaemia-clinical and biological insights[J]. Br J Haematol, 2024,204(4):1146-1158.DOI: 10.1111/bjh.19314. [7] Blombery P, Anderson MA, Gong JN,et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia[J]. Cancer Discov, 2019 ,9(3):342-353.DOI: 10.1158/2159-8290.CD-18-1119. [8] Tausch E, Close W, Dolnik A,et al. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia[J]. Haematologica, 2019,104(9):e434-e437. DOI: 10.3324/haematol.2019.222588. [9] van Delft MF, Wei AH, Mason KD,et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized[J]. Cancer Cell, 2006,10(5):389-399. DOI: 10.1016/j.ccr.2006.08.027. [10] Lindsten T, Ross AJ, King A,et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues[J]. Mol Cell, 2000 ,6(6):1389-1399.DOI: 10.1016/s1097-2765(00)00136-2. [11] Nechiporuk T, Kurtz SE, Nikolova O,et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells[J]. Cancer Discov, 2019,9(7):910-925.DOI: 10.1158/2159-8290.CD-19-0125. [12] Rahmani M, Nkwocha J, Hawkins E,et al. Cotargeting BCL-2 and PI3K induces BAX-dependent mitochondrial apoptosis in AML cells[J]. Cancer Res, 2018 ,78(11):3075-3086.DOI: 10.1158/0008-5472.CAN-17-3024. [13] Izzo F, Landau DA. A BAX door to venetoclax resistance[J]. Blood, 2022 ,139(8):1124-1126. DOI: 10.1182/blood.2021013788. [14] Wolter KG, Hsu YT, Smith CL,et al. Movement of bax from the cytosol to mitochondria during apoptosis[J]. J Cell Biol, 1997 ,139(5):1281-1292. DOI: 10.1083/jcb.139.5.1281. [15] Zhou H, Hou Q, Hansen JL,et al. Complete activation of bax by a single site mutation[J]. Oncogene, 2007,26(50):7092-7102. DOI: 10.1038/sj.onc.1210517. [16] Fresquet V, Rieger M, Carolis C,et al. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma[J]. Blood, 2014,123(26):4111-4119. DOI: 10.1182/blood-2014-03-560284. [17] Blombery P, Lew TE, Dengler MA,et al. Clonal hematopoiesis, myeloid disorders and BAX-mutated myelopoiesis in patients receiving venetoclax for CLL[J]. Blood, 2022,139(8):1198-1207.DOI: 10.1182/blood.2021012775. [18] Morabito F, Gentile M, Monti P,et al. TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors[J]. Expert Opin Investig Drugs, 2020 ,29(8):869-880. DOI: 10.1080/13543784.2020.1783239. [19] Konopleva M, Milella M, Ruvolo P, et al. MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex[J]. Leukemia, 2012,26(4):778-787.DOI: 10.1038/leu.2011.287. [20] Choi JH, Bogenberger JM, Tibes R. Targeting apoptosis in acute myeloid leukemia: current status and future directions of BCL-2 inhibition with venetoclax and beyond[J]. Target Oncol, 2020 ,15(2):147-162.DOI: 10.1007/s11523-020-00711-3. [21] Kawiak A, Domachowska A, Krolicka A,et al. 3-Chloroplumbagin induces cell death in breast cancer cells through MAPK-mediated Mcl-1 inhibition[J]. Front Pharmacol, 2019 ,10:784. DOI: 10.3389/fphar.2019.00784. [22] Zhang Q, Riley-Gillis B, Han L,et al. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia[J]. Signal Transduct Target Ther, 2022,7(1):51.DOI: 10.1038/s41392-021-00870-3. [23] DiNardo CD, Tiong IS, Quaglieri A,et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML[J]. Blood, 2020 ,135(11):791-803.DOI: 10.1182/blood.2019003988. [24] Herling CD, Abedpour N, Weiss J,et al. Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia[J]. Nat Commun, 2018,9(1):727. DOI: 10.1038/s41467-018-03170-7. [25] 朱玉,冯悦,罗兴春,等. 维奈克拉联合用药治疗急性髓系白血病的研究进展[J]. 中国新药与临床杂志,2021,40(3):161-166. DOI:10.14109/j.cnki.xyylc.2021.03.01. [26] Zhang X, Qian J, Wang H,et al. Not BCL2 mutation but dominant mutation conversation contributed to acquired venetoclax resistance in acute myeloid leukemia[J]. Biomark Res, 2021 ,9(1):30. DOI: 10.1186/s40364-021-00288-7. [27] Fang DD, Zhu H, Tang Q,et al. FLT3 inhibition by olverembatinib (HQP1351) downregulates MCL-1 and synergizes with BCL-2 inhibitor lisaftoclax (APG-2575) in preclinical models of FLT3-ITD mutant acute myeloid leukemia[J]. Transl Oncol, 2022 ,15(1):101244. DOI: 10.1016/j.tranon.2021.101244. [28] Chan SM, Thomas D, Corces-Zimmerman MR,et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia[J]. Nat Med, 2015,21(2):178-184. DOI: 10.1038/nm.3788. [29] Stuani L, Sabatier M, Saland E,et al. Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia[J]. J Exp Med, 2021 ,218(5):e20200924. DOI: 10.1084/jem.20200924. [30] Chen X, Glytsou C, Zhou H,et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment[J]. Cancer Discov, 2019,9(7):890-909. DOI: 10.1158/2159-8290.CD-19-0117. [31] Bhatt S, Pioso MS, Olesinski EA,et al. Reduced mitochondrial apoptotic priming drives resistance to BH3 mimetics in acute myeloid leukemia[J]. Cancer Cell, 2020 ,38(6):872-890.DOI: 10.1016/j.ccell.2020.10.010. [32] Sharon D, Cathelin S, Mirali S,et al. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response[J]. Science translational medicine, 2019, 11(516): eaax2863.DOI:10.1126/scitranslmed.aax2863. [33] Nakajima EC, Van Houten B. Metabolic symbiosis in cancer: refocusing the warburg lens[J]. Mol Carcinog, 2013, 52(5): 329-337.DOI:10.1002/mc.21863. [34] Cramer SL, Saha A, Liu J,et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth[J]. Nat Med, 2017 ,23(1):120-127.DOI: 10.1038/nm.4232. [35] El Sayed R, Haibe Y, Amhaz G,et al. Metabolic factors affecting tumor immunogenicity: what is happening at the cellular level?[J]. Int J Mol Sci, 2021,22(4):2142.DOI: 10.3390/ijms22042142. [36] Raffel S, Falcone M, Kneisel N,et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation[J]. Nature, 2017,551(7680):384-388. DOI: 10.1038/nature24294. [37] Stevens BM, Jones CL, Pollyea DA,et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells[J]. Nat Cancer, 2020,1(12):1176-1187.DOI: 10.1038/s43018-020-00126-z. [38] Konoplev S, Wang X, Tang G,et al. Comprehensive immunophenotypic study of acute myeloid leukemia with KMT2A (MLL) rearrangement in adults: a single-institution experience[J]. Cytometry B Clin Cytom, 2022 ,102(2):123-133.DOI: 10.1002/cyto.b.22051. [39] Gouw AM, Eberlin LS, Margulis K,et al. Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma[J]. Proc Natl Acad Sci U S A,2017,114(17):4300-4305.DOI: 10.1073/pnas.1617709114. [40] Chiarugi A, Dölle C, Felici R,et al. The NAD metabolome--a key determinant of cancer cell biology[J]. Nat Rev Cancer, 2012 ,12(11):741-752.DOI: 10.1038/nrc3340. [41] Jones CL, Stevens BM, Pollyea DA,et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells[J]. Cell Stem Cell, 2020,27(5):748-764.DOI: 10.1016/j.stem.2020.07.021. [42] Coloff JL, Mason EF, Altman BJ,et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells[J]. J Biol Chem, 2011,286(7):5921-5933. DOI: 10.1074/jbc.M110.179101. [43] Danial NN, Gramm CF, Scorrano L,et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis[J]. Nature, 2003,424(6951):952-956. DOI: 10.1038/nature01825. [44] Rathmell JC, Fox CJ, Plas DR,et al. Akt-directed glucose metabolism can prevent bax conformation change and promote growth factor-independent survival[J]. Mol Cell Biol, 2003 ,23(20):7315-7328.DOI: 10.1128/MCB.23.20.7315-7328.2003. [45] Bosc C, Saland E, Bousard A,et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia[J]. Nat Cancer, 2021 ,2(11):1204-1223. DOI: 10.1038/s43018-021-00264-y. [46] Chen ZX, Pervaiz S. Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells[J]. Cell Death Differ, 2007 ,14(9):1617-1627. DOI: 10.1038/sj.cdd.4402165. [47] Roca-Portoles A, Rodriguez-Blanco G, Sumpton D,et al. Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition[J]. Cell Death Dis, 2020 ,11(8):616.DOI: 10.1038/s41419-020-02867-2. [48] Lee JB, Khan DH, Hurren R,et al. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production[J]. Blood, 2021,138(3):234-245. DOI: 10.1182/blood.2020009081. [49] Cai Z, Li CF, Han F,et al. Phosphorylation of PDHA by AMPK drives TCA cycle to promote cancer metastasis[J]. Mol Cell, 2020,80(2):263-278.DOI: 10.1016/j.molcel.2020.09.018. [50] She QB, Solit DB, Ye Q,et al. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells[J]. Cancer Cell, 2005,8(4):287-297. DOI: 10.1016/j.ccr.2005.09.006. [51] Yang E, Zha J, Jockel J,et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death[J]. Cell, 1995 ,80(2):285-291. DOI: 10.1016/0092-8674(95)90411-5. [52] Lindsay J, Esposti MD, Gilmore AP. Bcl-2 proteins and mitochondria--specificity in membrane targeting for death[J]. Biochim Biophys Acta, 2011,1813(4):532-539. DOI: 10.1016/j.bbamcr.2010.10.017. [53] Alkhatabi HA, Zohny SF, Shait Mohammed MR,et al. Venetoclax-resistant MV4-11 leukemic cells activate PI3K/AKT pathway for metabolic reprogramming and redox adaptation for survival[J]. Antioxidants (Basel), 2022 ,11(3):461. DOI: 10.3390/antiox11030461. [54] Carter BZ, Mak PY, Tao W,et al. Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition[J]. Haematologica, 2022 ,107(1):58-76. DOI: 10.3324/haematol.2020.260331. [55] Vander Heiden MG, Chandel NS, Schumacker PT, et al. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange[J]. Mol Cell, 1999,3(2):159-167. DOI: 10.1016/s1097-2765(00)80307-x. [56] Wang X, Bathina M, Lynch J,et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction[J]. Genes Dev, 2013 ,27(12):1351-1364. DOI: 10.1101/gad.215855.113. [57] Salem AH, Agarwal SK, Dunbar M, et al. Pharmacokinetics of venetoclax, a novel BCL-2 inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or non-hodgkin lymphoma[J]. J Clin Pharmacol, 2017,57(4):484-492.DOI: 10.1002/jcph.821. |
[1] | 肖正平 李保松 张智睿 蒋宏. 基于Cajal间质细胞治疗慢传输型便秘患者的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1409-1414. |
[2] | 刘志强 张翠 董文敬 刘振 孙经武. 心肌纤维化与AMPK-mTOR-ULK1信号通路研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1297-1300. |
[3] | 王霞 赛海芳. 代谢组学在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1312-1316. |
[4] | 崔筱 刘亮. 辣椒素受体在腹泻型肠易激综合征发病中的作用 [J]. 国际医药卫生导报, 2024, 30(7): 1066-1070. |
[5] | 丁嘉雯 李娜. ESBLs阳性肺炎克雷伯菌的研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1071-1074. |
[6] | 黄双旺 何宇巍 梁珠薇 王楠 苏歆. 2021—2023年某院碳青霉烯类耐药革兰阴性杆菌分布及耐药性分析 [J]. 国际医药卫生导报, 2024, 30(7): 1087-1090. |
[7] | 李小妹 卢健 覃莉 凌燕兰. 卵巢过度刺激综合征患者的护理干预研究现状 [J]. 国际医药卫生导报, 2024, 30(7): 1199-1202. |
[8] | 贺恒奕 张小伟 陈宁杰. 吸烟对肩袖损伤及预后的影响 [J]. 国际医药卫生导报, 2024, 30(5): 710-712. |
[9] | 许超 王笑尘 田磊. 2013―2022年某医院肺泡灌洗液病原菌分布及耐药性分析 [J]. 国际医药卫生导报, 2024, 30(5): 814-820. |
[10] | 刘辉 李卓民. 老年脑梗死患者伴肺部感染的病原菌、耐药性及抗菌药物使用 [J]. 国际医药卫生导报, 2024, 30(4): 623-627. |
[11] | 于潇杰 程立浩 张浩 张浩杰 杨振林. 铁死亡与乳腺癌患者化疗耐药的关系研究进展 [J]. 国际医药卫生导报, 2024, 30(3): 353-356. |
[12] | 王山 郝建斌 赵杰 郝延璋. 晚期肝细胞癌患者的TATI综合治疗模式 [J]. 国际医药卫生导报, 2024, 30(23): 3933-3936. |
[13] | 李洋 程金凤 魏景迅 崔明丽 程艳丽. 氧化应激相关通路在阿霉素诱导心脏毒性中的作用 [J]. 国际医药卫生导报, 2024, 30(20): 3369-3372. |
[14] | 王声远 赵健 何文欢 刘子庾 徐燕. 仿真头模在口腔临床实践教学中的应用与展望 [J]. 国际医药卫生导报, 2024, 30(20): 3509-3513. |
[15] | 李志路 乔喜婷 焦婉 王小娟 司小敏. miR-339-5p调控EMT影响乳腺癌细胞化疗耐药的机制 [J]. 国际医药卫生导报, 2024, 30(19): 3250-3254. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||