[1] Ambati RR, Phang SM, Ravi S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review[J]. Mar Drugs, 2014,12(1):128-152. DOI: 10.3390/md12010128.
[2] Lorenz RT, Cysewski GR. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin[J]. Trends Biotechnol, 2000,18(4):160-167. DOI: 10.1016/s0167-7799(00)01433-5.
[3] Chen Y, Tang J, Zhang Y, et al. Astaxanthin alleviates gestational diabetes mellitus in mice through suppression of oxidative stress[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020,393(12):2517-2527. DOI: 10.1007/s00210-020-01861-x.
[4] Chen Q, Tao J, Li G, et al. Astaxanthin ameliorates experimental diabetes-induced renal oxidative stress and fibronectin by upregulating connexin43 in glomerular mesangial cells and diabetic mice[J]. Eur J Pharmacol, 2018,840:33-43. DOI: 10.1016/j.ejphar.2018.09.028.
[5] Farruggia C, Kim MB, Bae M, et al. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners[J]. J Nutr Biochem, 2018,62:202-209. DOI: 10.1016/j.jnutbio.2018.09.005.
[6] Sajadimajd S, Khazaei M. Oxidative stress and cancer: the role of Nrf2[J]. Curr Cancer Drug Targets, 2018,18(6):538-557. DOI: 10.2174/1568009617666171002144228.
[7] Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress[J]. Antioxid Redox Signal, 2006,8(1-2):76-87. DOI: 10.1089/ars.2006.8.76.
[8] Kanwugu ON, Glukhareva TV. Activation of Nrf2 pathway as a protective mechanism against oxidative stress-induced diseases: potential of astaxanthin[J]. Arch Biochem Biophys, 2023,741:109601. DOI: 10.1016/j.abb.2023.109601.
[9] Zhou H, Wang Y, You Q, et al. Recent progress in the development of small molecule Nrf2 activators: a patent review (2017-present) [J]. Expert Opin Ther Pat, 2020,30(3):209-225. DOI: 10.1080/13543776.2020.1715365.
[10] Madden SK, Itzhaki LS. Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery[J]. Biochim Biophys Acta Proteins Proteom, 2020,1868(7):140405. DOI: 10.1016/j.bbapap.2020. 140405.
[11] Takagi Y, Kobayashi M, Li L, et al. MafT, a new member of the small Maf protein family in zebrafish[J]. Biochem Biophys Res Commun, 2004,320(1):62-69. DOI: 10.1016/j.bbrc.2004.05.131.
[12] Ooi BK, Chan KG, Goh BH, et al. The role of natural products in targeting cardiovascular diseases via Nrf2 pathway: novel molecular mechanisms and therapeutic approaches[J]. Front Pharmacol, 2018,9:1308. DOI: 10.3389/fphar.2018.01308.
[13] Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2[J]. Antioxid Redox Signal, 2018,29(17):1727-1745. DOI: 10.1089/ars.2017.7342.
[14] Nioi P, McMahon M, Itoh K, et al. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence[J]. Biochem J, 2003,374(Pt 2):337-348. DOI: 10.1042/BJ20030754.
[15] Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018,1865(5):721-733. DOI: 10.1016/j.bbamcr.2018.02.010.
[16] Zenkov NK, Kozhin PM, Chechushkov AV, et al. Mazes of Nrf2 regulation[J]. Biochemistry (Mosc), 2017,82(5):556-564. DOI: 10.1134/S0006297917050030.
[17] Shaw P, Chattopadhyay A. Nrf2-ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms[J]. J Cell Physiol, 2020,235(4):3119-3130. DOI: 10.1002/jcp.29219.
[18] McMahon M, Thomas N, Itoh K, et al. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron[J]. J Biol Chem, 2004,279(30):31556-31567. DOI: 10.1074/jbc.M403061200.
[19] Wang H, Liu K, Geng M, et al. RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2[J]. Cancer Res, 2013,73(10):3097-108. DOI: 10.1158/0008-5472.CAN-12-3386.
[20] Cleasby A, Yon J, Day PJ, et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO[J]. PLoS One, 2014,9(6):e98896. DOI: 10.1371/journal.pone.0098896.
[21] Namani A, Li Y, Wang XJ, et al Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer[J]. Biochim Biophys Acta, 2014,1843(9):1875-1885. DOI: 10.1016/j.bbamcr.2014.05.003.
[22] Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment[J]. Pharmacol Rep, 2017,69(3):393-402. DOI: 10.1016/j.pharep.2016.12.011.
[23] Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity[J]. J Biol Chem, 1991,266(18):11632-11639.
[24] Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway[J]. Trends Pharmacol Sci, 2013,34(6):340-346. DOI: 10.1016/j.tips.2013.04.005.
[25] Singh S, Vrishni S, Singh BK, et al. Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases[J]. Free Radic Res, 2010,44(11):1267-1288. DOI: 10.3109/10715762.2010.507670.
[26] Ying CJ, Zhang F, Zhou XY, et al. Anti-inflammatory effect of astaxanthin on the sickness behavior induced by diabetes mellitus[J]. Cell Mol Neurobiol, 2015,35(7):1027-1037. DOI: 10.1007/s10571-015-0197-3.
[27] Xie X, Chen Q, Tao J. Astaxanthin promotes Nrf2/ARE signaling to inhibit HG-induced renal fibrosis in GMCs[J]. Mar Drugs, 2018,16(4):117. DOI: 10.3390/md16040117.
[28] Liu G, Shi Y, Peng X, et al. Astaxanthin attenuates adriamycin-induced focal segmental glomerulosclerosis[J]. Pharmacology, 2015,95(3-4):193-200. DOI: 10.1159/000381314.
[29] Qiu X, Fu K, Zhao X, et al. Protective effects of astaxanthin against ischemia/reperfusion induced renal injury in mice[J]. J Transl Med, 2015,13:28. DOI: 10.1186/s12967-015-0388-1.
[30] Yang Y, Pham TX, Wegner CJ, et al. Astaxanthin lowers plasma TAG concentrations and increases hepatic antioxidant gene expression in diet-induced obesity mice[J]. Br J Nutr, 2014,112(11):1797-1804. DOI: 10.1017/S0007114514002554.
[31] Yang Y, Seo JM, Nguyen A, et al. Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice[J]. J Nutr, 2011,141(9):1611-1617. DOI: 10.3945/jn.111.142109.
[32] El-Baz FK, Hussein RA, Abdel Jaleel GAR, et al. Astaxanthin-rich Haematococcus pluvialis algal hepatic modulation in D-Galactose-induced aging in rats: role of Nrf2[J]. Adv Pharm Bull, 2018,8(3):523-528. DOI: 10.15171/apb.2018.061.
[33] Xue Y, Sun C, Hao Q, et al. Astaxanthin ameliorates cardiomyocyte apoptosis after coronary microembolization by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2019,392(3):341-348. DOI: 10.1007/s00210-018-1595-0.
[34] Cui G, Li L, Xu W, et al. Astaxanthin protects ochratoxin a-induced oxidative stress and apoptosis in the heart via the Nrf2 pathway[J]. Oxid Med Cell Longev, 2020,2020:7639109. DOI: 10.1155/2020/7639109.
[35] Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease[J]. Annu Rev Pathol, 2009,4:435-459. DOI: 10.1146/annurev.pathol.4.110807.092145.
[36] Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite[J]. Ann N Y Acad Sci, 1993,686:12-27. DOI: 10.1111/j.1749-6632.1993.tb39148.x.
[37] Kubo H, Asai K, Kojima K, et al. Astaxanthin suppresses cigarette smoke-induced emphysema through Nrf2 activation in mice[J]. Mar Drugs, 2019,17(12):673. DOI: 10.3390/md17120673.
[38] Zhang XS, Zhang X, Zhou ML, et al. Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage[J]. J Neurosurg, 2014,121(1):42-54. DOI: 10.3171/2014.2.JNS13730.
[39] Wu Q, Zhang XS, Wang HD, et al. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury[J]. Mar Drugs, 2014,12(12):6125-6141. DOI: 10.3390/md12126125.
|