国际医药卫生导报 ›› 2023, Vol. 29 ›› Issue (15): 2081-2085.DOI: 10.3760/cma.j.issn.1007-1245.2023.15.003
二甲双胍在脊髓损伤中的实验性研究进展
董金玉 龚星源 马跃 胡忠波 刘晟 刘永良
滨州医学院附属医院神经外科,滨州 256603
收稿日期:
2023-01-29
出版日期:
2023-08-01
发布日期:
2023-08-28
通讯作者:
刘永良,Email:sp_lyl@163.com
Experimental research progress of metformin in spinal cord injury
Dong Jinyu, Gong Xingyuan, Ma Yue, Hu Zhongbo, Liu Sheng, Liu Yongliang
Neurosurgery Department, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2023-01-29
Online:
2023-08-01
Published:
2023-08-28
Contact:
Liu Yongliang, Email: sp_lyl@163.com
摘要:
脊髓损伤是一种毁灭性的疾病,可破坏脊髓解剖结构,引起轴突断裂、神经元变性坏死、炎性反应、脱髓鞘形成等一系列病理反应,最终导致严重的神经功能障碍,严重影响患者生活质量。二甲双胍是一种经典的抗糖尿病药物和抗氧化剂,作为老药新用的代表,已将其应用扩展到实验性脊髓损伤治疗。本文对相关文献报道进行了回顾性分析,以期提高二甲双胍在脊髓损伤方面的认识。
董金玉 龚星源 马跃 胡忠波 刘晟 刘永良.
二甲双胍在脊髓损伤中的实验性研究进展 [J]. 国际医药卫生导报, 2023, 29(15): 2081-2085.
Dong Jinyu, Gong Xingyuan, Ma Yue, Hu Zhongbo, Liu Sheng, Liu Yongliang.
Experimental research progress of metformin in spinal cord injury [J]. International Medicine and Health Guidance News, 2023, 29(15): 2081-2085.
[1] Vismara I, Papa S, Veneruso V, et al. Selective modulation of A1 astrocytes by drug-loaded nano-structured gel in spinal cord injury[J].ACS Nano,2020,14(1):360-371.DOI:10.1021/acsnano.9b05579. [2] Pan QL, Lin FX, Liu N, et al. The role of aquaporin 4 (AQP4) in spinal cord injury[J].Biomed Pharmacother,2022,145:112384.DOI:10.1016/j.biopha.2021.112384. [3] Blonde L, Dipp S, Cadena D. Combination glucose-lowering therapy plans in T2DM: case-based considerations[J].Adv Ther,2018,35(7):939-965.DOI:10.1007/s12325-018-0694-0. [4] Witters LA. The blooming of the French lilac[J].J Clin Invest,2001,108(8):1105-1107.DOI:10.1172/JCI14178. [5] Breining P, Jensen JB, Sundelin EI, et al. Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro[J].Diabetes Obes Metab,2018,20(9):2264-2273.DOI:10.1111/dom.13362. [6] Gandini S, Puntoni M, Heckman-Stoddard BM, et al. Metformin and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders[J].Cancer Prev Res (Phila),2014,7(9):867-885.DOI:10.1158/1940-6207.CAPR-13-0424. [7] Neven E, Vervaet B, Brand K, et al. Metformin prevents the development of severe chronic kidney disease and its associated mineral and bone disorder[J].Kidney Int,2018,94(1):102-113.DOI:10.1016/j.kint.2018.01.027. [8] Lv Z, Guo Y. Metformin and Its benefits for various diseases[J].Front Endocrinol (Lausanne),2020,11:191.DOI:10.3389/fendo.2020.00191. [9] Franco CCDS, Previate C, Trombini AB, et al. Metformin improves autonomic nervous system imbalance and metabolic dysfunction in monosodium L-glutamate-treated rats[J].Front Endocrinol (Lausanne),2021,12:660793.DOI:10.3389/fendo.2021.660793. [10] STERNE J.Blood sugar-lowering effect of 1,1-dimethylbiguanide[J].Therapie,1958,13(4):650-659. [11] McKENDRY JB, KUWAYTI K, RADO PP. Clinical experience with DBI (phenformin) in the management of diabetes[J].Can Med Assoc J,1959,80(10):773-778. [12] DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The multicenter metformin study group[J].N Engl J Med,1995,333(9):541-549.DOI:10.1056/NEJM199508313330902. [13] Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group[J].Lancet,1998,352(9131):837-853. [14] Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group[J].Lancet,1998,352(9131):854-865. [15] Triggle CR, Mohammed I, Bshesh K, et al. Metformin: is it a drug for all reasons and diseases?[J].Metabolism,2022,133:155223.DOI:10.1016/j.metabol.2022.155223. [16] Kathuria D, Raul AD, Wanjari P, et al. Biguanides: Species with versatile therapeutic applications[J].Eur J Med Chem,2021,219:113378.DOI:10.1016/j.ejmech.2021.113378. [17] El-Ghaiesh SH, Bahr HI, Ibrahiem AT, et al. Metformin protects from rotenone-induced nigrostriatal neuronal death in adult mice by activating AMPK-FOXO3 signaling and mitigation of angiogenesis[J].Front Mol Neurosci,2020,13:84.DOI:10.3389/fnmol.2020.00084. [18] Leech T, Apaijai N, Palee S, et al. Acute administration of metformin prior to cardiac ischemia/reperfusion injury protects brain injury[J].Eur J Pharmacol,2020,885:173418.DOI:10.1016/j.ejphar.2020.173418. [19] Sanz P, Serratosa JM, Sánchez MP. Beneficial effects of metformin on the central nervous system, with a focus on epilepsy and lafora disease[J].Int J Mol Sci,2021,22(10):5351.DOI:10.3390/ijms22105351. [20] Ashabi G, Khodagholi F, Khalaj L, et al. Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats: interference of AMPK/PGC-1α pathway[J].Metab Brain Dis,2014,29(1):47-58.DOI:10.1007/s11011-013-9475-2. [21] Cao G, Gong T, Du Y, et al. Mechanism of metformin regulation in central nervous system: Progression and future perspectives[J].Biomed Pharmacother,2022,156:113686.DOI:10.1016/j.biopha.2022.113686. [22] Sanz P, Garcia-Gimeno MA. Reactive glia inflammatory signaling pathways and epilepsy[J].Int J Mol Sci,2020,21(11):4096.DOI:10.3390/ijms21114096. [23] H S N, Paudel YN, K L K. Envisioning the neuroprotective effect of metformin in experimental epilepsy: a portrait of molecular crosstalk[J].Life Sci,2019,233:116686.DOI:10.1016/j.lfs.2019.116686. [24] Markowicz-Piasecka M, Sikora J, Szydłowska A, et al. Metformin - a future therapy for neurodegenerative diseases : theme: drug discovery, development and delivery in alzheimer's disease guest editor: Davide Brambilla[J].Pharm Res,2017,34(12):2614-2627.DOI:10.1007/s11095-017-2199-y. [25] Rotermund C, Machetanz G, Fitzgerald JC. The therapeutic potential of metformin in neurodegenerative diseases[J].Front Endocrinol (Lausanne),2018,9:400.DOI:10.3389/fendo.2018.00400. [26] Salminen A, Hyttinen JM, Kaarniranta K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan[J].J Mol Med (Berl),2011,89(7):667-676.DOI:10.1007/s00109-011-0748-0. [27] Wang G, Cui W, Chen S, et al. Metformin alleviates high glucose-induced ER stress and inflammation by inhibiting the interaction between caveolin1 and AMPKα in rat astrocytes[J].Biochem Biophys Res Commun,2021,534:908-913.DOI:10.1016/j.bbrc.2020.10.075. [28] Xian H, Liu Y, Rundberg Nilsson A, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation[J].Immunity,2021,54(7):1463-1477.e11.DOI:10.1016/j.immuni.2021.05.004. [29] Xiang X, Zhou L, Lin Z, et al. Metformin regulates macrophage polarization via the Shh signaling pathway to improve pulmonary vascular development in bronchopulmonary dysplasia[J].IUBMB Life,2022,74(3):259-271.DOI:10.1002/iub.2588. [30] Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis[J].Nat Rev Mol Cell Biol,2007,8(9):741-752.DOI:10.1038/nrm2239. [31] Föller M, Huber SM, Lang F. Erythrocyte programmed cell death[J].IUBMB Life,2008,60(10):661-668.DOI:10.1002/iub.106. [32] Lekli I, Haines DD, Balla G, et al. Autophagy: an adaptive physiological countermeasure to cellular senescence and ischaemia/reperfusion-associated cardiac arrhythmias[J].J Cell Mol Med,2017,21(6):1058-1072.DOI:10.1111/jcmm.13053. [33] Shi Z, Yuan S, Shi L, et al. Programmed cell death in spinal cord injury pathogenesis and therapy[J].Cell Prolif,2021,54(3):e12992.DOI:10.1111/cpr.12992. [34] Zhang D, Xuan J, Zheng BB, et al. Metformin improves functional recovery after spinal cord injury via autophagy flux stimulation[J].Mol Neurobiol,2017,54(5):3327-3341.DOI:10.1007/s12035-016-9895-1. [35] 张迪. 二甲双胍促进脊髓损伤大鼠运动功能恢复及其机制研究[D].温州:温州医科大学,2017. [36] Inyang KE, Szabo-Pardi T, Wentworth E, et al. The antidiabetic drug metformin prevents and reverses neuropathic pain and spinal cord microglial activation in male but not female mice[J].Pharmacol Res,2019,139:1-16.DOI:10.1016/j.phrs.2018.10.027. [37] Wang C, Liu C, Gao K, et al. Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury[J].Biochem Biophys Res Commun,2016,477(4):534-540.DOI:10.1016/j.bbrc.2016.05.148. [38] Yuan Y, Fan X, Guo Z, et al. Metformin protects against spinal cord injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway[J].Anal Cell Pathol (Amst),2022,2022:3634908.DOI:10.1155/2022/3634908. [39] Wang Z, Wu Z, Xie Z, et al. Metformin attenuates ferroptosis and promotes functional recovery of spinal cord injury[J].World Neurosurg,2022,167:e929-e939.DOI:10.1016/j.wneu.2022.08.121. [40] 赵季伟,苗志刚,孙辉辉,等. 二甲双胍通过TET2-Foxo3a途径对脊髓损伤的抗凋亡机制研究[J]. 中华骨科杂志,2021,41(9):584-594.DOI:10.3760/cma.j.cn121113-20210201- 00098. [41] 郭卫东,李刚,范仲凯. 二甲双胍对大鼠脊髓损伤后内质网应激和细胞凋亡的影响[J]. 解剖学杂志(社会科学版),2019,42(2):161-166.DOI:10.3969/j.issn.1001-1633. 2019.02.012. [42] Zeng H, Liu N, Yang YY, et al. Lentivirus-mediated downregulation of α-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury[J].J Neuroinflammation,2019,16(1):283.DOI:10.1186/s12974-019-1658-2. [43] Liu X, Zhang Y, Wang Y, et al. Inflammatory response to spinal cord injury and its treatment[J].World Neurosurg,2021,155:19-31.DOI:10.1016/j.wneu.2021.07.148. [44] Song WY, Ding H, Dunn T, et al. Low-dose metformin treatment in the subacute phase improves the locomotor function of a mouse model of spinal cord injury[J].Neural Regen Res,2021,16(11):2234-2242.DOI:10.4103/1673- 5374.310695. [45] Zhang T, Wang F, Li K, et al. Therapeutic effect of metformin on inflammation and apoptosis after spinal cord injury in rats through the Wnt/β-catenin signaling pathway[J].Neurosci Lett,2020,739:135440.DOI:10.1016/j.neulet.2020.135440. [46] Afshari K, Dehdashtian A, Haddadi NS, et al. Anti-inflammatory effects of Metformin improve the neuropathic pain and locomotor activity in spinal cord injured rats: introduction of an alternative therapy[J].Spinal Cord,2018,56(11):1032-1041.DOI:10.1038/s41393-018-0168-x. [47] Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair[J].Nat Commun,2019,10(1):3879.DOI:10.1038/s41467-019-11707-7. [48] Wu YQ, Xiong J, He ZL, et al. Metformin promotes microglial cells to facilitate myelin debris clearance and accelerate nerve repairment after spinal cord injury[J].Acta Pharmacol Sin,2022,43(6):1360-1371.DOI:10.1038/s41401-021-00759-5. [49] Kim HN, Langley MR, Simon WL, et al. A Western diet impairs CNS energy homeostasis and recovery after spinal cord injury: Link to astrocyte metabolism[J].Neurobiol Dis,2020,141:104934.DOI:10.1016/j.nbd.2020.104934. [50] 丁汉. 二甲双胍促进神经干细胞增殖、分化、成熟的实验研究[D]. 天津:天津医科大学,2019. [51] Wang H, Zheng Z, Han W, et al. Metformin promotes axon regeneration after spinal cord injury through inhibiting oxidative stress and stabilizing microtubule[J].Oxid Med Cell Longev,2020,2020:9741369.DOI:10.1155/2020/9741369. [52] 宋文晔. 亚急性期应用二甲双胍治疗脊髓损伤的实验研究[D]. 天津:天津医科大学,2019. [53] Yu Q, Jiang X, Liu X, et al. Glutathione-modified macrophage-derived cell membranes encapsulated metformin nanogels for the treatment of spinal cord injury[J].Biomater Adv,2022,133:112668.DOI:10.1016/j.msec.2022.112668. [54] Muller WA. Getting leukocytes to the site of inflammation[J].Vet Pathol,2013,50(1):7-22.DOI:10.1177/0300985812469883. [55] Li T, Jing P, Yang L, et al. CAQK modification enhances the targeted accumulation of metformin-loaded nanoparticles in rats with spinal cord injury[J].Nanomedicine,2022,41:102526.DOI:10.1016/j.nano. 2022.102526. [56] Zhang D, Tang Q, Zheng G, et al. Metformin ameliorates BSCB disruption by inhibiting neutrophil infiltration and MMP-9 expression but not direct TJ proteins expression regulation[J].J Cell Mol Med,2017,21(12):3322-3336.DOI:10.1111/jcmm.13235. [57] Han Q, Zheng T, Zhang L, et al. Metformin loaded injectable silk fibroin microsphere for the treatment of spinal cord injury[J].J Biomater Sci Polym Ed,2022,33(6):747-768.DOI:10.1080/09205063.2021.2014113. [58] Zhou LY, Chen XQ, Yu BB, et al. The effect of metformin on ameliorating neurological function deficits and tissue damage in rats following spinal cord injury: a systematic review and network meta-analysis[J].Front Neurosci,2022,16:946879.DOI:10.3389/fnins.2022.946879. [59] Chen Q, Xie D, Yao Q, et al. Effect of metformin on locomotor function recovery in rat spinal cord injury model: a meta-analysis[J].Oxid Med Cell Longev,2021,2021:1948003.DOI:10.1155/2021/1948003. |
[1] | 刘玉姣 王超 刘菲. 中西医结合治疗产后盆底肌筋膜疼痛的研究进展 [J]. 国际医药卫生导报, 2023, 29(9): 1204-1207. |
[2] | 王泽川 黄月琴. 急性髓系白血病靶向药物治疗新进展 [J]. 国际医药卫生导报, 2023, 29(8): 1045-1048. |
[3] | 徐仕杰 罗泽斌 陈晓东. CT肺动脉成像在肺栓塞诊治中的应用进展 [J]. 国际医药卫生导报, 2023, 29(8): 1053-1056. |
[4] | 张衡 潘广涛 殷鸣 张平 尹霞. 自体脂肪移植在整形外科中的研究进展 [J]. 国际医药卫生导报, 2023, 29(7): 889-892. |
[5] | 康杰 张建建 张伟东 张岳 黄杲德. 尼可地尔联合二甲双胍治疗2型糖尿病合并冠心病患者的疗效和安全性观察 [J]. 国际医药卫生导报, 2023, 29(7): 936-939. |
[6] | 于丰源 刘聪 阮佳朋. 祛瘀生新针法联合康复疗法对脑梗死患者的疗效 [J]. 国际医药卫生导报, 2023, 29(7): 987-990. |
[7] | 宋云红 刘亚楠 张宗丽. 二肽基肽酶4抑制剂联合二甲双胍治疗初诊2型糖尿病患者的效果 [J]. 国际医药卫生导报, 2023, 29(6): 836-838. |
[8] | 吴雪梅 张玉杰 解胜华. 银屑病与心血管共病关系的研究进展 [J]. 国际医药卫生导报, 2023, 29(4): 453-456. |
[9] | 杨丽娜 王玉 夏铂. 烙灸临床应用研究进展 [J]. 国际医药卫生导报, 2023, 29(2): 154-. |
[10] | 张翠 刘振 刘婧扬 石新烨 刘志强 孙经武. NLRP3炎性小体与糖尿病心肌病的研究进展 [J]. 国际医药卫生导报, 2023, 29(16): 2221-2225. |
[11] | 方建锋. 肠道菌群与代谢性疾病关系研究进展 [J]. 国际医药卫生导报, 2023, 29(16): 2225-2229. |
[12] | 龙玲美 刘伟旺 伍媛. 骨质疏松及骨折风险危险因素和评估工具的应用 [J]. 国际医药卫生导报, 2023, 29(16): 2230-2234. |
[13] | 郭靖 赵天增. 健侧肺不同流量持续给氧辅助肺癌胸腔镜根治术对患者炎性反应及术后并发症的影响 [J]. 国际医药卫生导报, 2023, 29(16): 2259-2263. |
[14] | 徐希 李向阳 张波 向远刚 阳攀 张振声 许传亮. 预防膀胱癌患者发生静脉血栓栓塞的研究进展 [J]. 国际医药卫生导报, 2023, 29(15): 2073-2076. |
[15] | 赵嘉昊 商雪 祝慧 李昕玺 徐会圃. PI3K/AKT信号通路在心血管疾病中的研究进展 [J]. 国际医药卫生导报, 2023, 29(15): 2077-2080. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||