[1] Levey AS, James MT. Acute kidney injury[J]. Ann Intern Med,2017,167(9):ITC66-ITC80.DOI:10.7326/AITC201711070.
[2] Persson PB. Mechanisms of acute kidney injury[J].Acta Physiol (Oxf),2013,207(3):430-431.DOI:10.1111/apha.12063.
[3] Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation[J].Nat Med,2011,17(11):1391-1401.DOI:10.1038/nm.2507.
[4] 李红艳,吴克非,田建伟. 黄芪当归合剂及他汀类药物对缺氧复氧人肾小管上皮细胞的保护作用[J]. 临床肾脏病杂志,2012,12(12):562-566.DOI:10.3969/j.issn.1671-2390. 2012.12.013.
[5] 苏妍妍,李红艳,张云芳,等.黄芪甲苷通过调节Th1/Th2平衡保护缺氧复氧肾小管上皮细胞损伤[J].国际移植与血液净化杂志,2018,16(5):13-16.DOI:10.3760/cma.j.issn.1673-4238.2018.05.005.
[6] 苏妍妍,李红艳,张云芳,等. 黄芪甲苷对肾缺血再灌注损伤模型大鼠Th1/Th2平衡的调节作用[J]. 国际中医中药杂志,2019,41(7):728-734.DOI:10.3760/cma.j.issn.1673-4246. 2019.07.013.
[7] 杨椹,冯俊霞,段燕灵,等. 黄芪甲苷对小鼠RAW264.7巨噬细胞缺氧复氧损伤的影响[J]. 国际中医中药杂志,2017,39(8):714-718.DOI:10.3760/cma.j.issn.1673-4246. 2017. 08.011.
[8] Wai T, Langer T. Mitochondrial dynamics and metabolic regulation[J].Trends Endocrinol Metab,2016,27(2):105-117.DOI:10.1016/j.tem.2015.12.001.
[9] Ishimoto Y, Inagi R. Mitochondria: a therapeutic target in acute kidney injury[J].Nephrol Dial Transplant,2016,31(7):1062-1069.DOI:10.1093/ndt/gfv317.
[10] Emma F, Montini G, Parikh SM, et al. Mitochondrial dysfunction in inherited renal disease and acute kidney injury[J].Nat Rev Nephrol,2016,12(5):267-280.DOI:10.1038/nrneph.2015.214.
[11] Li H, Feng J, Zhang Y, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway[J].Redox Biol,2019,20:261-274.DOI:10.1016/j.redox.2018.10.012.
[12] Song Y, Li T, Liu Z, et al. Inhibition of Drp1 after traumatic brain injury provides brain protection and improves behavioral performance in rats[J].Chem Biol Interact,2019,304:173-185.DOI:10.1016/j.cbi.2019.03.013.
[13] Pagliarini DJ, Calvo SE, Chang B, et al. A mitochondrial protein compendium elucidates complex I disease biology[J].Cell,2008,134(1):112-123.DOI:10.1016/j.cell.2008. 06.016.
[14] O'Connor PM. Renal oxygen delivery: matching delivery to metabolic demand[J].Clin Exp Pharmacol Physiol,2006,33(10):961-967.DOI:10.1111/j.1440-1681.2006.04475.x.
[15] 艾晨牧,段智,李桂成,等. GLP-1受体对脂多糖诱导的肾小管上皮细胞焦亡的影响[J]. 国际医药卫生导报,2020,26(13):1832-1835.DOI:10.3760/cma.j.issn.1007-1245. 2020.13.004.
[16] Boulghobra D, Coste F, Geny B, et al. Exercise training protects the heart against ischemia-reperfusion injury: A central role for mitochondria?[J].Free Radic Biol Med,2020,152:395-410.DOI:10.1016/j.freeradbiomed.2020. 04.005.
[17] Linkermann A, De Zen F, Weinberg J, et al. Programmed necrosis in acute kidney injury[J].Nephrol Dial Transplant,2012,27(9):3412-3419.DOI:10.1093/ndt/gfs373.
[18] Linkermann A, Chen G, Dong G, et al. Regulated cell death in AKI[J].J Am Soc Nephrol,2014,25(12):2689-2701.DOI:10.1681/ASN.2014030262.
[19] Linkermann A, Stockwell BR, Krautwald S, et al. Regulated cell death and inflammation: an auto-amplification loop causes organ failure[J].Nat Rev Immunol,2014,14(11):759-767.DOI:10.1038/nri3743.
[20] Wang Z, Jiang H, Chen S, et al. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways[J].Cell,2012,148(1-2):228-243.DOI:10.1016/j.cell.2011.11.030.
[21] Tait SW, Oberst A, Quarato G, et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis[J].Cell Rep,2013,5(4):878-85.DOI:10.1016/j.celrep.2013.10.034.
|