国际医药卫生导报 ›› 2023, Vol. 29 ›› Issue (20): 2852-2856.DOI: 10.3760/cma.j.issn.1007-1245.2023.20.007
NKG2D及其配体治疗胃癌的研究进展
李宗睿 刘为朋 胡宝光
滨州医学院附属医院胃肠外科,滨州 256600
收稿日期:
2023-06-09
出版日期:
2023-10-15
发布日期:
2023-11-06
通讯作者:
胡宝光,Email:hbglmn@163.com
基金资助:
山东省自然科学基金(ZR2017LHO50)
Research progress of NKG2D and its ligands in treatment of gastric cancer
Li Zongrui, Liu Weipeng, Hu Baoguang
Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou 256600, China
Received:
2023-06-09
Online:
2023-10-15
Published:
2023-11-06
Contact:
Hu Baoguang, Email: hbglmn@163.com
Supported by:
Shandong Natural Science Foundation (ZR2017LHO50)
摘要:
自然杀伤细胞2D(natural killer cell 2D,NKG2D)及其配体在NK细胞识别、启动、增强或抑制淋巴细胞效应功能上发挥着重要作用。近年来,随着肿瘤免疫逃避研究的深入,NK细胞上的NKG2D受体成为一个研究热门。胃癌作为严重影响人类寿命的疾病,其治疗一直是难以突破的难题。近年来,针对癌症的免疫治疗取得了重大突破。NKG2D及其配体可能是一个潜在的免疫治疗方向,故本文综述了NKG2D及其配体治疗胃癌的研究进展。
李宗睿 刘为朋 胡宝光.
NKG2D及其配体治疗胃癌的研究进展 [J]. 国际医药卫生导报, 2023, 29(20): 2852-2856.
Li Zongrui, Liu Weipeng, Hu Baoguang.
Research progress of NKG2D and its ligands in treatment of gastric cancer [J]. International Medicine and Health Guidance News, 2023, 29(20): 2852-2856.
[1] Lanier LL. NKG2D receptor and its ligands in host defense [J]. Cancer Immunol Res, 2015, 3(6): 575-582. DOI: 10.1158/2326-6066.CIR-15-0098. [2] Cerboni C, Mousavi-Jazi M, Linde A, et al. Human cytomegalovirus strain-dependent changes in NK cell recognition of infected fibroblasts [J]. J Immunol, 2000, 164(9): 4775-4782. DOI: 10.4049/jimmunol.164.9.4775. [3] Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA [J]. Science, 1999, 285(5428): 727-729. DOI: 10.1126/science.285.5428.727. [4] Garrity D, Call ME, Feng J, et al. The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure [J]. Proc Natl Acad Sci U S A, 2005, 102(21): 7641-7646. DOI: 10.1073/pnas.0502439102. [5] Diefenbach A, Tomasello E, Lucas M, et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D [J]. Nat Immunol, 2002, 3(12): 1142-1149. DOI: 10.1038/ni858. [6] McFarland BJ, Kortemme T, Yu SF, et al. Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands [J]. Structure, 2003, 11(4): 411-422. DOI: 10.1016/s0969-2126(03)00047-9. [7] Di Santo JP. Natural killer cell developmental pathways: a question of balance [J]. Annu Rev Immunol, 2006, 24: 257-286. DOI: 10.1146/annurev.immunol.24. 021605.090700. [8] Raulet DH, Gasser S, Gowen BG, et al. Regulation of ligands for the NKG2D activating receptor [J]. Annu Rev Immunol, 2013, 31: 413-441. DOI: 10.1146/annurev-immunol-032712-095951. [9] Raulet DH. Roles of the NKG2D immunoreceptor and its ligands [J]. Nat Rev Immunol, 2003, 3(10): 781-790. DOI: 10.1038/nri1199. [10] Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host immune responses [J]. Immunol Rev, 2010, 235(1): 267-285. DOI: 10.1111/j.0105-2896.2010.00893.x. [11] Le Bert N, Gasser S. Advances in NKG2D ligand recognition and responses by NK cells [J]. Immunol Cell Biol, 2014, 92(3): 230-236. DOI: 10.1038/icb.2013.111. [12] Eagle RA, Trowsdale J. Promiscuity and the single receptor: NKG2D [J]. Nat Rev Immunol, 2007, 7(9): 737-744. DOI: 10.1038/nri2144. [13] Curio S, Lin W, Bromley C, et al. NKG2D fine-tunes the local inflammatory response in colorectal cancer [J]. Cancers (Basel), 2023, 15(6): 1792. DOI: 10.3390/cancers15061792. [14] Dutta S, Ganguly A, Chatterjee K, et al. Targets of immune escape mechanisms in cancer: basis for development and evolution of cancer immune checkpoint inhibitors [J]. Biology (Basel), 2023, 12(2): 218. DOI: 10.3390/biology12020218. [15] Baragaño Raneros A, Suarez-Álvarez B, López-Larrea C. Secretory pathways generating immunosuppressive NKG2D ligands: new targets for therapeutic intervention [J]. Oncoimmunology, 2014, 3: e28497. DOI: 10.4161/onci.28497. [16] Eagle RA, Jafferji I, Barrow AD. Beyond stressed self: evidence for NKG2D ligand expression on healthy cells [J]. Curr Immunol Rev, 2009, 5(1): 22-34. DOI: 10.2174/157339509787314369. [17] Yu L, Sun L, Liu X, et al. The imbalance between NKG2A and NKG2D expression is involved in NK cell immunosuppression and tumor progression of patients with hepatitis B virus-related hepatocellular carcinoma [J]. Hepatol Res, 2023, 53(5): 417-431. DOI: 10.1111/hepr.13877. [18] Wensveen FM, Jelenčić V, Polić B. NKG2D: a master regulator of immune cell responsiveness [J]. Front Immunol, 2018, 9: 441. DOI: 10.3389/fimmu.2018.00441. [19] Groh V, Wu J, Yee C, et al. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation [J]. Nature, 2002, 419(6908): 734-738. DOI: 10.1038/nature01112. [20] Curio S, Jonsson G, Marinović S. A summary of current NKG2D-based CAR clinical trials [J]. Immunother Adv, 2021, 1(1): ltab018. DOI: 10.1093/immadv/ltab018. [21] Molfetta R, Quatrini L, Capuano C, et al. c-Cbl regulates MICA- but not ULBP2-induced NKG2D down-modulation in human NK cells [J]. Eur J Immunol, 2014, 44(9): 2761-2770. DOI: 10.1002/eji.201444512. [22] Quatrini L, Molfetta R, Zitti B, et al. Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells [J]. Sci Signal, 2015, 8(400): ra108. DOI: 10.1126/scisignal.aab2724. [23] Roda-Navarro P, Reyburn HT. The traffic of the NKG2D/Dap10 receptor complex during natural killer (NK) cell activation [J]. J Biol Chem, 2009, 284(24): 16463-16472. DOI: 10.1074/jbc.M808561200. [24] Doubrovina ES, Doubrovin MM, Vider E, et al. Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma [J]. J Immunol, 2003, 171(12): 6891-6899. DOI: 10.4049/jimmunol.171.12.6891. [25] Chitadze G, Bhat J, Lettau M, et al. Generation of soluble NKG2D ligands: proteolytic cleavage, exosome secretion and functional implications [J]. Scand J Immunol, 2013, 78(2): 120-129. DOI: 10.1111/sji.12072. [26] Chitadze G, Lettau M, Bhat J, et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the "a disintegrin and metalloproteases" 10 and 17 [J]. Int J Cancer, 2013, 133(7): 1557-1566. DOI: 10.1002/ijc.28174. [27] Zingoni A, Cecere F, Vulpis E, et al. Genotoxic stress induces senescence-associated ADAM10-dependent release of NKG2D MIC ligands in multiple myeloma cells [J]. J Immunol, 2015, 195(2): 736-748. DOI: 10.4049/jimmunol.1402643. [28] Ashiru O, Boutet P, Fernández-Messina L, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes [J]. Cancer Res, 2010, 70(2): 481-489. DOI: 10.1158/0008-5472.CAN-09-1688. [29] Kumar V, Yi Lo PH, Sawai H, et al. Soluble MICA and a MICA variation as possible prognostic biomarkers for HBV-induced hepatocellular carcinoma [J]. PLoS One, 2012, 7(9):e44743. DOI: 10.1371/journal.pone.0044743. [30] Tamaki S, Kawakami M, Ishitani A, et al. Soluble MICB serum levels correlate with disease stage and survival rate in patients with oral squamous cell carcinoma [J]. Anticancer Res, 2010, 30(10): 4097-4101. [31] Zhao YK, Jia CM, Yuan GJ, et al. Expression and clinical value of the soluble major histocompatibility complex class I-related chain A molecule in the serum of patients with renal tumors [J]. Genet Mol Res, 2015, 14(2): 7233-7240. DOI: 10.4238/2015.June.29.16. [32] Holdenrieder S, Stieber P, Peterfi A, et al. Soluble MICA in malignant diseases [J]. Int J Cancer, 2006, 118(3): 684-687. DOI: 10.1002/ijc.21382. [33] Maccalli C, Giannarelli D, Chiarucci C, et al. Soluble NKG2D ligands are biomarkers associated with the clinical outcome to immune checkpoint blockade therapy of metastatic melanoma patients [J]. Oncoimmunology, 2017, 6(7): e1323618. DOI: 10.1080/2162402X. 2017.1323618. [34] Barber A, Zhang T, Megli CJ, et al. Chimeric NKG2D receptor-expressing T cells as an immunotherapy for multiple myeloma [J]. Exp Hematol, 2008, 36(10): 1318-1328. DOI: 10.1016/j.exphem.2008.04.010. [35] Barber A, Zhang T, DeMars LR, et al. Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer [J]. Cancer Res, 2007, 67(10): 5003-5008. DOI: 10.1158/0008-5472.CAN-06-4047. [36] Fernández L, Metais JY, Escudero A, et al. Memory T cells expressing an NKG2D-CAR efficiently target osteosarcoma cells [J]. Clin Cancer Res, 2017, 23(19): 5824-5835. DOI: 10.1158/1078-0432.CCR-17-0075. [37] Chang YH, Connolly J, Shimasaki N, et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells [J]. Cancer Res, 2013, 73(6): 1777-1786. DOI: 10.1158/0008-5472.CAN-12-3558. [38] Basher F, Jeng EK, Wong H, et al. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC [J]. Oncotarget, 2016, 7(1): 814-830. DOI: 10.18632/oncotarget.6416. [39] Han Y, Xie W, Song DG, et al. Control of triple-negative breast cancer using ex vivo self-enriched, costimulated NKG2D CAR T cells [J]. J Hematol Oncol, 2018, 11(1): 92. DOI: 10.1186/s13045-018-0635-z. [40] Fernández-Sánchez A, Baragaño Raneros A, Carvajal Palao R, et al. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8+ T and NK cells [J]. Epigenetics, 2013, 8(1): 66-78. DOI: 10.4161/epi.23115. [41] Raneros AB, Minguela A, Rodriguez RM, et al. Increasing TIMP3 expression by hypomethylating agents diminishes soluble MICA, MICB and ULBP2 shedding in acute myeloid leukemia, facilitating NK cell-mediated immune recognition [J]. Oncotarget, 2017, 8(19):31959-31976. DOI: 10.18632/oncotarget.16657. [42] Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer [J]. CA Cancer J Clin, 2021, 71(3): 264-279. DOI: 10.3322/caac.21657. [43] Seeneevassen L, Bessède E, Mégraud F, et al. Gastric cancer: advances in carcinogenesis research and new therapeutic strategies [J]. Int J Mol Sci, 2021, 22(7): 3418. DOI: 10.3390/ijms22073418. [44] Wang FH, Zhang XT, Li YF, et al. The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer, 2021 [J]. Cancer Commun (Lond), 2021, 41(8): 747-795. DOI: 10.1002/cac2.12193. [45] Li K, Zhang A, Li X, et al. Advances in clinical immunotherapy for gastric cancer [J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188615. DOI: 10.1016/j.bbcan.2021.188615. [46] Janjigian YY, Maron SB, Chatila WK, et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial [J]. Lancet Oncol, 2020, 21(6): 821-831. DOI: 10.1016/S1470-2045(20)30169-8. [47] Jemal A, Bray F, Center MM, et al. Global cancer statistics [J]. CA Cancer J Clin, 2011, 61(2): 69-90. DOI: 10.3322/caac.20107. [48] Mimura K, Kamiya T, Shiraishi K, et al. Therapeutic potential of highly cytotoxic natural killer cells for gastric cancer [J]. Int J Cancer, 2014, 135(6): 1390-1398. DOI: 10.1002/ijc.28780. [49] Liu X, Sun M, Yu S, et al. Potential therapeutic strategy for gastric cancer peritoneal metastasis by NKG2D ligands-specific T cells [J]. Onco Targets Ther, 2015, 8: 3095-3104. DOI: 10.2147/OTT.S91122. [50] Lin F, Dai C, Ge X, et al. Prognostic significance and functional implication of immune activating receptor NKG2D in gastric cancer [J]. Biochem Biophys Res Commun, 2017, 487(3): 619-624. DOI: 10.1016/j.bbrc.2017.04.104. [51] Zhou Z, Li J, Hong J, et al. Interleukin-15 and chemokine ligand 19 enhance cytotoxic effects of chimeric antigen receptor T cells using zebrafish xenograft model of gastric cancer [J]. Front Immunol, 2022, 13: 1002361. DOI: 10.3389/fimmu.2022.1002361. [52] Tao K, He M, Tao F, et al. Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment [J]. Cancer Chemother Pharmacol, 2018, 82(5): 815-827. DOI: 10.1007/s00280-018-3670-0. [53] Li M, Zhi L, Yin M, et al. A novel bispecific chimeric PD1-DAP10/NKG2D receptor augments NK92-cell therapy efficacy for human gastric cancer SGC-7901 cell [J]. Biochem Biophys Res Commun, 2020, 523(3):745-752. DOI: 10.1016/j.bbrc.2020.01.005. [54] Han B, Mao FY, Zhao YL, et al. Altered NKp30, NKp46, NKG2D, and DNAM-1 expression on circulating nk cells is associated with tumor progression in human gastric cancer [J]. J Immunol Res, 2018: 6248590. DOI: 10.1155/2018/6248590. [55] Béziat V, Liu LL, Malmberg JA, et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs [J]. Blood, 2013, 121(14): 2678-2688. DOI: 10.1182/blood-2012-10-459545. [56] Zhang T, Scott JM, Hwang I, et al. Cutting edge: antibody-dependent memory-like NK cells distinguished by FcRγ deficiency [J]. J Immunol, 2013, 190(4): 1402-1406. DOI: 10.4049/jimmunol.1203034. [57] Tran HC, Wan Z, Sheard MA, et al. TGFβR1 blockade with galunisertib (LY2157299) enhances anti-neuroblastoma activity of the anti-GD2 antibody dinutuximab (ch14.18) with natural killer cells [J]. Clin Cancer Res, 2017, 23(3): 804-813. DOI: 10.1158/1078-0432.CCR-16-1743. [58] Chen Y, Chen B, Yang T, et al. Human fused NKG2D-IL-15 protein controls xenografted human gastric cancer through the recruitment and activation of NK cells [J]. Cell Mol Immunol, 2017, 14(3): 293-307. DOI: 10.1038/cmi.2015.81. |
[1] | 刘玉姣 王超 刘菲. 中西医结合治疗产后盆底肌筋膜疼痛的研究进展 [J]. 国际医药卫生导报, 2023, 29(9): 1204-1207. |
[2] | 王泽川 黄月琴. 急性髓系白血病靶向药物治疗新进展 [J]. 国际医药卫生导报, 2023, 29(8): 1045-1048. |
[3] | 徐仕杰 罗泽斌 陈晓东. CT肺动脉成像在肺栓塞诊治中的应用进展 [J]. 国际医药卫生导报, 2023, 29(8): 1053-1056. |
[4] | 张衡 潘广涛 殷鸣 张平 尹霞. 自体脂肪移植在整形外科中的研究进展 [J]. 国际医药卫生导报, 2023, 29(7): 889-892. |
[5] | 吴雪梅 张玉杰 解胜华. 银屑病与心血管共病关系的研究进展 [J]. 国际医药卫生导报, 2023, 29(4): 453-456. |
[6] | 袁晓莉 王振波. 食管鳞癌的肿瘤免疫微环境和免疫检查点抑制剂研究进展 [J]. 国际医药卫生导报, 2023, 29(3): 310-314. |
[7] | 汪文 赵仙丽 吴绪波. 高强度间歇性训练干预慢性心力衰竭的研究进展 [J]. 国际医药卫生导报, 2023, 29(21): 2985-2989. |
[8] | 陈吉祥 卢静. 优化调节驱动压在肺保护性通气策略中的研究进展 [J]. 国际医药卫生导报, 2023, 29(21): 2990-2994. |
[9] | 刘其昌 杨青宇 曾玉萍 高典明 黄文立. 以推拿为主治疗颈性眩晕的研究进展 [J]. 国际医药卫生导报, 2023, 29(21): 2994-2997. |
[10] | 商雪 赵嘉昊 李昕玺 祝慧 赵珂 刘振兴 徐会圃. GSDMD介导的细胞焦亡在心房颤动中的研究进展 [J]. 国际医药卫生导报, 2023, 29(20): 2825-2828. |
[11] | 王耀耀 马秀芳. 免疫性内耳病的相关研究进展 [J]. 国际医药卫生导报, 2023, 29(20): 2833-2836. |
[12] | 王璐 谢赫男 赵齐美 谢争. 成人口腔健康素养综合测量工具的研究进展 [J]. 国际医药卫生导报, 2023, 29(20): 2836-2841. |
[13] | 武寒 徐磊 王苗苗 崔忠泽 吴淑华. 加权基因共表达网络筛选胃癌关键功能模块与预后相关基因 [J]. 国际医药卫生导报, 2023, 29(20): 2842-2847. |
[14] | 储琳琳 王娜 郝佳慧 孙虓 刘成霞. 多胺与幽门螺杆菌相关胃癌的研究进展 [J]. 国际医药卫生导报, 2023, 29(20): 2848-2851. |
[15] | 杨丽娜 王玉 夏铂. 烙灸临床应用研究进展 [J]. 国际医药卫生导报, 2023, 29(2): 154-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||