[1] Wang X, Fu Q, Song F, et al. Prevalence of atrial fibrillation in different socioeconomic regions of China and its association with stroke: results from a national stroke screening survey[J]. Int J Cardiol, 2018 ,271:92-97. DOI: 10.1016/j.ijcard.2018.05.131.
[2] Chua W, Law JP, Cardoso VR, et al. Quantification of fibroblast growth factor 23 and N-terminal pro-B-type natriuretic peptide to identify patients with atrial fibrillation using a high-throughput platform: a validation study[J]. PLoS Med, 2021 ,18(2):e1003405. DOI: 10.1371/journal.pmed.1003405.
[3] Wang X, Fu Q, Song F, et al. Prevalence of atrial fibrillation in different socioeconomic regions of China and its association with stroke: Results from a national stroke screening survey[J]. Int J Cardiol, 2018 ,271:92-97. DOI: 10.1016/j.ijcard.2018.05.131.
[4] 王一斐,张萍. 心房颤动与炎症反应之交互关系[J]. 中国心血管杂志,2023,28(1):62-66. DOI:10.3969/j.issn.1007-5410.2023.01.013.
[5] Chang G, Chen Y, Liu Z,et al. The PD-1 with PD-L1 axis is pertinent with the immune modulation of atrial fibrillation by regulating T cell excitation and promoting the secretion of inflammatory factors[J]. J Immunol Res, 2022 ,2022:3647817. DOI: 10.1155/2022/3647817.
[6] Yao C, Veleva T, Scott L, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation[J]. Circulation, 2018,138(20):2227-2242. DOI: 10.1161/CIRCULATIONAHA.118.035202.
[7] 李彬,李泱,陈雅婷,等. 核苷酸结合寡聚化结构域样受体蛋白3炎性小体在肥胖相关心房颤动发病中的研究进展[J]. 中华老年心脑血管病杂志,2023,25(1):99-101. DOI:10.3969/j.issn.1009-0126.2023.01.026.
[8] 谢红英,张小群,罗晓丽,等. Nod样受体蛋白3与非瓣膜性心房颤动患者左心房血栓形成的相关性[J]. 中华老年心脑血管病杂志,2019,21(10):1036-1040. DOI:10.3969/j.issn.1009-0126.2019.10.008.
[9] Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature,1992,358(6382):167-169. DOI: 10.1038/358167a0.
[10] Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk[J]. Cell Death Differ, 2019 ,26(1):99-114. DOI: 10.1038/s41418-018-0212-6.
[11] Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015 ,526(7575):660-665. DOI: 10.1038/nature15514.
[12] Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018[J]. Cell Death Differ, 2018 ,25(3):486-541. DOI: 10.1038/s41418-017-0012-4.
[13] Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017 ,42(4):245-254. DOI: 10.1016/j.tibs.2016.10.004.
[14] Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer[J]. Biomed Pharmacother, 2020 ,121:109595. DOI: 10.1016/j.biopha.2019.109595.
[15] 梅旦,张玲玲,魏伟. 细胞焦亡机制及与疾病的关系[J]. 生理科学进展,2020,51(2):151-156. DOI:10.3969/j.issn.0559-7765.2020.02.018.
[16] Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017 ,547(7661):99-103. DOI: 10.1038/nature22393.
[17] Donado CA, Cao AB, Simmons DP, et al. A two-cell model for IL-1β release mediated by death-receptor signaling[J]. Cell Rep, 2020 ,31(1):107466. DOI: 10.1016/j.celrep.2020.03.030.
[18] Demarco B, Grayczyk JP, Bjanes E, et al. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality[J]. Sci Adv, 2020 ,6(47):eabc3465. DOI: 10.1126/sciadv.abc3465.
[19] Zhou Z, He H, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020 ,368(6494):eaaz7548. DOI: 10.1126/science.aaz7548.
[20] Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature, 2020 ,579(7799):415-420. DOI: 10.1038/s41586-020-2071-9.
[21] Tamura M, Tanaka S, Fujii T, et al. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner[J]. Genomics, 2007 ,89(5):618-629. DOI: 10.1016/j.ygeno.2007.01.003.
[22] Liu Z, Wang C, Yang J, et al. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization[J]. Immunity, 2019 ,51(1):43-49.e4. DOI: 10.1016/j.immuni.2019.04.017.
[23] He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res, 2015 ,25(12):1285-1298. DOI: 10.1038/cr.2015.139.
[24] Xia S, Hollingsworth LR 4th, Wu H. Mechanism and regulation of gasdermin-mediated cell death[J]. Cold Spring Harb Perspect Biol, 2020 ,12(3):a036400. DOI: 10.1101/cshperspect.a036400.
[25] Rodríguez-Antonio I, López-Sánchez GN, Uribe M, et al. Role of the inflammasome, gasdermin D, and pyroptosis in non-alcoholic fatty liver disease[J]. J Gastroenterol Hepatol, 2021 ,36(10):2720-2727. DOI: 10.1111/jgh.15561.
[26] Hu S, Wang L, Xu Y, et al. Disulfiram attenuates hypoxia-induced pulmonary hypertension by inhibiting GSDMD cleavage and pyroptosis in HPASMCs[J]. Respir Res, 2022 ,23(1):353. DOI: 10.1186/s12931-022-02279-0.
[27] Hu JJ, Liu X, Xia S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation[J]. Nat Immunol, 2020 ,21(7):736-745. DOI: 10.1038/s41590-020-0669-6.
[28] Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: an increasing epidemic and public health challenge[J]. Int J Stroke, 2021 ,16(2):217-221. DOI: 10.1177/1747493019897870.
[29] Mukherjee K, Kamal KM. Impact of atrial fibrillation on inpatient cost for ischemic stroke in the USA[J]. Int J Stroke, 2019 ,14(2):159-166. DOI: 10.1177/1747493018765491.
[30] Leonelli Fabio,Bagliani Giuseppe,Boriani Giuseppeet al. Arrhythmias Originating in the Atria.[J] .Card Electrophysiol Clin, 2017, 9: 383-409.
[31] Harada M, Nattel S. Implications of inflammation and fibrosis in atrial fibrillation pathophysiology[J]. Card Electrophysiol Clin, 2021 ,13(1):25-35. DOI: 10.1016/j.ccep.2020.11.002.
[32] Yan B, Liu T, Yao C, et al. LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles suppresses myocardial pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated Arl2 inhibition[J]. Lab Invest, 2021 ,101(11):1427-1438. DOI: 10.1038/s41374-021-00635-0.
[33] Chen G, Chelu MG, Dobrev D, et al. Cardiomyocyte inflammasome signaling in cardiomyopathies and atrial fibrillation: mechanisms and potential therapeutic implications[J]. Front Physiol, 2018 ,9:1115. DOI: 10.3389/fphys.2018.01115.
[34] Yan B, Liu T, Yao C, et al. LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles suppresses myocardial pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated Arl2 inhibition[J]. Lab Invest, 2021 ,101(11):1427-1438. DOI: 10.1038/s41374-021-00635-0.
[35] Li N, Brundel BJJM. Inflammasomes and proteostasis novel molecular mechanisms associated with atrial fibrillation[J]. Circ Res, 2020 ,127(1):73-90. DOI: 10.1161/CIRCRESAHA.119.316364.
[36] Heijman J, Muna AP, Veleva T, et al. Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation[J]. Circ Res, 2020 ,127(8):1036-1055. DOI: 10.1161/CIRCRESAHA.120.316710.
[37] Song L, Pei L, Yao S, et al. NLRP3 inflammasome in neurological diseases, from functions to therapies[J]. Front Cell Neurosci, 2017 ,11:63. DOI: 10.3389/fncel.2017.00063.
[38] Shen HH, Yang YX, Meng X, et al. NLRP3: a promising therapeutic target for autoimmune diseases[J]. Autoimmun Rev, 2018 ,17(7):694-702. DOI: 10.1016/j.autrev.2018.01.020.
[39] Wei X, Xie F, Zhou X, et al. Role of pyroptosis in inflammation and cancer[J]. Cell Mol Immunol, 2022 ,19(9):971-992. DOI: 10.1038/s41423-022-00905-x.
[40] Zeng C, Wang R, Tan H. Role of pyroptosis in cardiovascular diseases and its therapeutic implications[J]. Int J Biol Sci, 2019 ,15(7):1345-1357. DOI: 10.7150/ijbs.33568.
[41] 王佳慧,梁欢,于影,等. 细胞焦亡与心血管疾病的研究进展[J]. 生理学报,2021,73(2):329-341. DOI:10.13294/j.aps.2020.0063.
|