国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (10): 1590-1593.DOI: 10.3760/cma.j.issn.1007-1245.2024.10.002
血管周围脂肪组织炎症反应参与主动脉夹层发生发展的研究进展
王傲 邹明锐 韩曰信 王玉玖
滨州医学院附属医院心脏大血管外科,滨州 256603
收稿日期:
2023-12-22
出版日期:
2024-05-15
发布日期:
2024-05-31
通讯作者:
王玉玖,Email:yujiuwang0543@126.com
基金资助:
山东省自然科学基金(ZR2023MH067)
Research progress of perivascular adipose tissue inflammation involved in the occurrence and development of aortic dissection
Wang Ao, Zou Mingrui, Han Yuexin, Wang Yujiu
Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2023-12-22
Online:
2024-05-15
Published:
2024-05-31
Contact:
Wang Yujiu, Email: yujiuwang0543@126.com
Supported by:
Natural Science Foundation of Shandong Province (ZR2023MH067)
摘要:
主动脉夹层(AD)又称主动脉夹层动脉瘤,其起病凶险、病死率高。近年来,对其疾病进程中炎症指标变化的研究提示炎症与疾病临床转归的关系密切,且炎症反应最早出现在主动脉外膜及周围脂肪组织中。血管周围脂肪组织(PVAT)通过促炎机制介导动脉管壁炎症,与多种心血管疾病的发生发展密切相关。因此,针对PVAT炎症的检测及干预对研究AD早期病理生理变化以及AD高危人群早期预防具有重要意义。
王傲 邹明锐 韩曰信 王玉玖.
血管周围脂肪组织炎症反应参与主动脉夹层发生发展的研究进展 [J]. 国际医药卫生导报, 2024, 30(10): 1590-1593.
Wang Ao, Zou Mingrui, Han Yuexin, Wang Yujiu.
Research progress of perivascular adipose tissue inflammation involved in the occurrence and development of aortic dissection [J]. International Medicine and Health Guidance News, 2024, 30(10): 1590-1593.
[1] Hagan PG, Nienaber CA, Isselbacher EM, et al. The international registry of acute aortic dissection (IRAD): new insights into an old disease[J]. JAMA, 2000, 283(7):897-903. DOI: 10.1001/jama.283.7.897. [2] Ren W, Wang Z, Wang J, et al. IL-5 overexpression attenuates aortic dissection by reducing inflammation and smooth muscle cell apoptosis[J]. Life Sci, 2020, 241:117144. DOI: 10.1016/j.lfs.2019.117144. [3] Xu H, Du S, Fang B, et al. VSMC-specific EP4 deletion exacerbates angiotensin II-induced aortic dissection by increasing vascular inflammation and blood pressure[J]. Proc Natl Acad Sci U S A, 2019, 116(17):8457-8462. DOI: 10.1073/pnas.1902119116. [4] Lu HY, Hsu HL, Li CH, et al. Hydrogen sulfide attenuates aortic remodeling in aortic dissection associating with moderated inflammation and oxidative stress through a NO-dependent pathway[J]. Antioxidants (Basel), 2021, 10(5):682. DOI: 10.3390/antiox10050682. [5] Chumachenko PV, Postnov AY, Ivanova AG, et al. Thoracic aortic aneurysm and factors affecting aortic dissection[J]. J Pers Med, 2020, 10(4):153. DOI: 10.3390/jpm10040153. [6] Hillock-Watling C, Gotlieb AI. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall[J]. Cardiovasc Pathol, 2022, 61:107459. DOI: 10.1016/j.carpath.2022.107459. [7] Chen Y, Qin Z, Wang Y, et al. Role of inflammation in vascular disease-related perivascular adipose tissue dysfunction[J]. Front Endocrinol (Lausanne), 2021, 12:710842. DOI: 10.3389/fendo.2021.710842. [8] 冯小航,樊天斐,侯杨峰,等.炎性细胞和主动脉固有细胞在主动脉夹层中的研究现状[J].中华心血管病杂志,2023,51(1):92-98. DOI:10.3760/cma.j.cn112148-20221206- 00966. [9] Zhang J, Tecson KM, McCullough PA. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy[J]. Rev Cardiovasc Med, 2020, 21(3):315-319. DOI: 10.31083/j.rcm.2020.03.126. [10] Majolée J, Kovačević I, Hordijk PL. Ubiquitin-based modifications in endothelial cell-cell contact and inflammation[J]. J Cell Sci, 2019, 132(17):jcs227728. DOI: 10.1242/jcs.227728. [11] Wang T, He X, Liu X, et al. Weighted gene co-expression network analysis identifies FKBP11 as a key regulator in acute aortic dissection through a NF-kB dependent pathway[J]. Front Physiol, 2017, 8:1010. DOI: 10.3389/fphys.2017.01010. [12] Tang N, Sun B, Gupta A, et al. Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-κB in endothelial cells[J]. FASEB J, 2016, 30(9):3097-3106. DOI: 10.1096/fj.201600368RR. [13] Shen YH, LeMaire SA, Webb NR, et al. Aortic aneurysms and dissections series[J]. Arterioscler Thromb Vasc Biol, 2020, 40(3):e37-e46. DOI: 10.1161/ATVBAHA.120. 313991. [14] Wu D, Ren P, Zheng Y, et al. NLRP3 (nucleotide oligomerization domain-like receptor family, pyrin domain containing 3)-caspase-1 inflammasome degrades contractile proteins: implications for aortic biomechanical dysfunction and aneurysm and dissection formation[J]. Arterioscler Thromb Vasc Biol, 2017, 37(4):694-706. DOI: 10.1161/ATVBAHA.116.307648. [15] Milewicz DM, Guo DC, Tran-Fadulu V, et al. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction[J]. Annu Rev Genomics Hum Genet, 2008, 9:283-302. DOI: 10.1146/annurev.genom.8.080706.092303. [16] Zeng T, Gan J, Liu Y, et al. ADAMTS-5 decreases in aortas and plasma from aortic dissection patients and alleviates angiotensin II-induced smooth muscle-cell apoptosis[J]. Front Cardiovasc Med, 2020, 7:136. DOI: 10.3389/fcvm.2020.00136. [17] Chen Y, Zhang T, Yao F, et al. Dysregulation of interaction between LOXhigh fibroblast and smooth muscle cells contributes to the pathogenesis of aortic dissection[J]. Theranostics, 2022, 12(2):910-928. DOI: 10.7150/thno.66059. [18] Aoki H, Majima R, Hashimoto Y, et al. Ying and Yang of Stat3 in pathogenesis of aortic dissection[J]. J Cardiol, 2021, 77(5):471-474. DOI: 10.1016/j.jjcc.2020.10.010. [19] Zhou H, Ren Y, Xiao J, et al. Changes in aortic collagen in β-aminopropionitrile-induced acute aortic dissection[J]. Ann Transl Med, 2021, 9(20):1574. DOI: 10.21037/atm-21-4933. [20] Tieu BC, Lee C, Sun H, et al. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice[J]. J Clin Invest, 2009, 119(12):3637-3651. DOI: 10.1172/JCI38308. [21] Li X, Ma Z, Zhu YZ. Regional heterogeneity of perivascular adipose tissue: morphology, origin, and secretome[J]. Front Pharmacol, 2021, 12:697720. DOI: 10.3389/fphar.2021.697720. [22] Ye M, Ruan CC, Fu M, et al. Developmental and functional characteristics of the thoracic aorta perivascular adipocyte[J]. Cell Mol Life Sci, 2019, 76(4):777-789. DOI: 10.1007/s00018-018-2970-1. [23] Hildebrand S, Stümer J, Pfeifer A. PVAT and its relation to brown, beige, and white adipose tissue in development and function[J]. Front Physiol, 2018, 9:70. DOI: 10.3389/fphys.2018.00070. [24] Wolf D, Ley K. Immunity and inflammation in atherosclerosis[J]. Circ Res, 2019, 124(2):315-327. DOI: 10.1161/CIRCRESAHA.118.313591. [25] Chang L, Villacorta L, Li R, et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis[J]. Circulation, 2012, 126(9):1067-1078. DOI: 10.1161/CIRCULATIONAHA.112.104489. [26] Xiong W, Zhao X, Villacorta L, et al. Brown adipocyte-specific PPARγ (peroxisome proliferator-activated receptor γ) deletion impairs perivascular adipose tissue development and enhances atherosclerosis in mice[J]. Arterioscler Thromb Vasc Biol, 2018, 38(8):1738-1747. DOI: 10.1161/ATVBAHA.118. 311367. [27] Vernochet C, Peres SB, Davis KE, et al. C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists[J]. Mol Cell Biol, 2009, 29(17):4714-4728. DOI: 10.1128/MCB.01899-08. [28] Adachi Y, Ueda K, Nomura S, et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling[J]. Nat Commun, 2022, 13(1):5117. DOI: 10.1038/s41467-022-32658-6. [29] Wang Z, Lu H, Garcia-Barrio M, et al. RNA sequencing reveals perivascular adipose tissue plasticity in response to angiotensin II[J]. Pharmacol Res, 2022, 178:106183. DOI: 10.1016/j.phrs.2022.106183. [30] Gruzdeva OV, Dyleva YA, Belik EV, et al. Relationship between epicardial and coronary adipose tissue and the expression of adiponectin, leptin, and interleukin 6 in patients with coronary artery disease[J]. J Pers Med, 2022, 12(2):129. DOI: 10.3390/jpm12020129. [31] Mazzotta C, Basu S, Gower AC, et al. Perivascular adipose tissue inflammation in ischemic heart disease[J]. Arterioscler Thromb Vasc Biol, 2021, 41(3):1239-1250. DOI: 10.1161/ATVBAHA.120.315865. [32] Lohmann C, Schäfer N, von Lukowicz T, et al. Atherosclerotic mice exhibit systemic inflammation in periadventitial and visceral adipose tissue, liver, and pancreatic islets[J]. Atherosclerosis, 2009, 207(2):360-367. DOI: 10.1016/j.atherosclerosis.2009.05.004. [33] Kaur S, Bansal Y, Kumar R, et al. A panoramic review of IL-6: structure, pathophysiological roles and inhibitors[J]. Bioorg Med Chem, 2020, 28(5):115327. DOI: 10.1016/j.bmc.2020.115327. [34] Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms[J]. Exp Mol Med, 2021, 53(7):1116-1123. DOI: 10.1038/s12276-021-00649-0. [35] Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease[J]. Br J Pharmacol, 2017, 174(20):3496-3513. DOI: 10.1111/bph.13705. [36] Wen G, An W, Chen J, et al. Genetic and pharmacologic inhibition of the neutrophil elastase inhibits experimental atherosclerosis[J]. J Am Heart Assoc, 2018, 7(4):e008187. DOI: 10.1161/JAHA.117.008187. [37] Ansaldo AM, Montecucco F, Sahebkar A, et al. Epicardial adipose tissue and cardiovascular diseases[J]. Int J Cardiol, 2019, 278:254-260. DOI: 10.1016/j.ijcard.2018. 09.089. [38] Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat[J]. Sci Transl Med, 2017, 9(398):eaal2658. DOI: 10.1126/scitranslmed.aal2658. [39] Virdis A, Colucci R, Bernardini N, et al. Microvascular endothelial dysfunction in human obesity: role of TNF-α[J]. J Clin Endocrinol Metab, 2019, 104(2):341-348. DOI: 10.1210/jc.2018-00512. [40] Liu Y, Sun Y, Hu C, et al. Perivascular adipose tissue as an indication, contributor to, and therapeutic target for atherosclerosis[J]. Front Physiol, 2020, 11:615503. DOI: 10.3389/fphys.2020.615503. [41] Liu M, Song Y, Han Z. Study on the effect of LncRNA AK094457 on OX-LDL induced vascular smooth muscle cells[J]. Am J Transl Res, 2019, 11(9):5623-5633. [42] Miao CY, Li ZY. The role of perivascular adipose tissue in vascular smooth muscle cell growth[J]. Br J Pharmacol, 2012, 165(3):643-658. DOI: 10.1111/j.1476-5381.2011. 01404.x. [43] Horimatsu T, Kim HW, Weintraub NL. The role of perivascular adipose tissue in non-atherosclerotic vascular disease[J]. Front Physiol, 2017, 8:969. DOI: 10.3389/fphys.2017.00969. [44] Abyaneh HS, Regenold M, McKee TD, et al. Towards extracellular matrix normalization for improved treatment of solid tumors[J]. Theranostics, 2020, 10(4):1960-1980. DOI: 10.7150/thno.39995. [45] Xiao Z, Kong B, Yang H, et al. Key player in cardiac hypertrophy, emphasizing the role of toll-like receptor 4[J]. Front Cardiovasc Med, 2020, 7:579036. DOI: 10.3389/fcvm.2020.579036. |
[1] | 肖正平 李保松 张智睿 蒋宏. 基于Cajal间质细胞治疗慢传输型便秘患者的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1409-1414. |
[2] | 吕玮坤 索新祺 陈敏娜 张望 康启 姚婷婷 门丹阳 董静. 参附救心汤联合沙库巴曲缬沙坦治疗射血分数保留型心力衰竭的疗效 [J]. 国际医药卫生导报, 2024, 30(8): 1259-1263. |
[3] | 刘志强 张翠 董文敬 刘振 孙经武. 心肌纤维化与AMPK-mTOR-ULK1信号通路研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1297-1300. |
[4] | 王霞 赛海芳. 代谢组学在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1312-1316. |
[5] | 崔筱 刘亮. 辣椒素受体在腹泻型肠易激综合征发病中的作用 [J]. 国际医药卫生导报, 2024, 30(7): 1066-1070. |
[6] | 卢健 王亚军 宋杰. 一次性根管治疗与多次法根管治疗在牙体牙髓病患者中的疗效观察 [J]. 国际医药卫生导报, 2024, 30(7): 1111-1116. |
[7] | 吴鹏 杨鸿炜 李朝杰. 经肛门内镜下黏膜剥离术治疗早期直肠癌患者的效果观察 [J]. 国际医药卫生导报, 2024, 30(7): 1181-1185. |
[8] | 李小妹 卢健 覃莉 凌燕兰. 卵巢过度刺激综合征患者的护理干预研究现状 [J]. 国际医药卫生导报, 2024, 30(7): 1199-1202. |
[9] | 欧阳月仙 吴海蓉 彭姣 周立德. 自体富血小板血浆在慢性难愈合创面治疗中的效果分析 [J]. 国际医药卫生导报, 2024, 30(6): 1013-1017. |
[10] | 贺恒奕 张小伟 陈宁杰. 吸烟对肩袖损伤及预后的影响 [J]. 国际医药卫生导报, 2024, 30(5): 710-712. |
[11] | 朱运青 李帆 乔孝武. 肺部康复训练在沙丁胺醇治疗重度支气管哮喘急性期患儿中的效果 [J]. 国际医药卫生导报, 2024, 30(4): 544-548. |
[12] | 潘广涛 陈爱莹. 肠道免疫因素在炎症性肠病中的研究进展及治疗策略 [J]. 国际医药卫生导报, 2024, 30(4): 577-581. |
[13] | 杜生旺 史春强 吴新军 张婷婷. 腹腔镜术前口服高糖溶液对结直肠癌患者的影响 [J]. 国际医药卫生导报, 2024, 30(4): 606-609. |
[14] | 张晔. 关节镜下清理术联合截骨术治疗内侧间室膝骨关节炎的疗效研究 [J]. 国际医药卫生导报, 2024, 30(2): 214-218. |
[15] | 王燕 张桂月 陈翔. 替罗非班对进展性脑梗死患者血小板活性的影响及应用效果分析 [J]. 国际医药卫生导报, 2024, 30(2): 244-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||