[1] 田丽, 王琼英, 孙润民, 等. SGLT2i对2型糖尿病合并高血压患者24 h动态血压影响的荟萃分析[J]. 中华心血管病杂志, 2021, 49(10):1000-1011. DOI:
10.3760/cma.j.cn112148-20210127-00098.
[2] 邹静怡,张娜,高燕. 长链非编码RNA调控糖尿病心肌病分子机制的研究进展[J]. 解放军医药杂志,2020,32(6):109-112.
DOI:10.3969/j.issn.2095-140X.2020.06.024.
[3] 靳雪芹. 长链非编码RNA与肿瘤研究进展[J]. 国际检验医学杂志,2018,39(12):1492-1495. DOI:10.3969/j.issn. 1673-4130.2018.12.024.
[4] 韩聪,胡建宏,胡姗,等. 长链非编码RNA研究进展[J]. 生物技术通讯,2018,29(1):123-130.
DOI:10.3969/j.issn.1009- 0002.2018.01.024.
[5] 徐楚帆,江来. LncRNA分子生物学属性及其在中枢神经系统发育中的调控作用[J]. 上海交通大学学报(医学版),2017,37(2):262-266.
DOI:10.3969/j.issn.1674-8115. 2017.02.027.
[6] Zhang L, Fang Y, Cheng X, et al.
Silencing of long noncoding RNA SOX21-AS1 relieves neuronal oxidative stress
injury in mice with Alzheimer's disease by upregulating FZD3/5 via the Wnt
signaling pathway [J]. Mol Neurobiol, 2019, 56(5): 3522-3537. DOI:
10.1007/s12035-018-1299-y.
[7] 张辉芳,李富强,白银雪,等. LncRNA SNHG1通过吸附miR-326调控帕金森病发生、发展的作用机制[J]. 中国老年学杂志,2021,41(24):5682-5687. DOI:10.3969/j.issn.1005-9202.2021.24.055.
[8] Kraus TFJ, Haider M, Spanner J, et al.
Altered long noncoding RNA expression precedes the course of Parkinson's
disease-a preliminary report [J]. Mol Neurobiol, 2017, 54(4): 2869-2877. DOI:
10.1007/s12035-016-9854-x.
[9] Dharap A, Pokrzywa C, Vemuganti R.
Increased binding of stroke-induced long non-coding RNAs to the transcriptional
corepressors Sin3A and coREST [J]. ASN Neuro, 2013, 5(4):283-289. DOI:
10.1042/AN20130029.
[10] 武丹,曾林祥. 长链非编码RNA的微RNA海绵作用与呼吸系统疾病[J]. 中国生物化学与分子生物学报,2019,35(5):499-503.
DOI:10.13865/j.cnki.cjbmb.2019.05.05.
[11] Wu SM, Feng PH, Chuang HC, et al.
Impaired lnc-IL7R modulatory mechanism of Toll-like receptors is associated
with an exacerbator phenotype of chronic obstructive pulmonary disease [J].
FASEB J, 2020, 34(10):13317-13332. DOI: 10.1096/fj.202000632R.
[12] Loewen G, Jayawickramarajah J, Zhuo Y,
et al. Functions of lncRNA HOTAIR in lung cancer [J]. J Hematol Oncol, 2014,
7:90. DOI: 10.1186/s13045-014-0090-4.
[13] 张海涛,林文勇,王肖龙,等. lncRNA与心血管疾病的研究进展[J]. 中国医药导报,2018,15(31):53-55,59.
[14] 冯文娟,罗骏. LncRNA MALAT1在心血管疾病中的作用机制研究的进展[J]. 心血管康复医学杂志,2021,30(5):633-636. DOI:10.3969/j.issn.1008-0074.2021.05.32.
[15] Yan Y, Song D, Song X, Song C. The role
of lncRNA MALAT1 in cardiovascular disease [J]. IUBMB Life, 2020, 72(3):
334-342. DOI: 10.1002/iub.2210.
[16] Sato M, Kadomatsu T, Miyata K, et al.
The lncRNA Caren antagonizes heart failure by inactivating DNA damage response
and activating mitochondrial biogenesis [J]. Nat Commun, 2021, 12(1):2529. DOI:
10.1038/s41467-021- 22735-7.
[17] Zacharopoulou E, Gazouli M, Tzouvala M,
et al. The contribution of long non-coding RNAs in Inflammatory Bowel Diseases
[J]. Dig Liver Dis, 2017, 49(10):1067-1072. DOI: 10.1016/j.dld.2017.08.003.
[18] Zhang Z, Wang S, Yang F, et al. LncRNA
ROR1-AS1 high expression and its prognostic significance in liver cancer [J].
Oncol Rep, 2020, 43(1): 55-74. DOI: 10.3892/or.2019.7398.
[19] Işın M, Uysaler E, Özgür E, et al.
Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign
disease [J]. Front Genet, 2015, 6:168. DOI: 10.3389/fgene.2015.00168.
[20] He A, Chen Z, Mei H, Liu Y. Decreased
expression of LncRNA MIR31HG in human bladder cancer [J]. Cancer Biomark, 2016,
17(2):231-236. DOI: 10.3233/CBM-160635.
[21] Han Y, Liu C, Lei M, et al. LncRNA TUG1
was upregulated in osteoporosis and regulates the proliferation and apoptosis
of osteoclasts [J]. J Orthop Surg Res, 2019, 14(1): 416. DOI:
10.1186/s13018-019-1430-4.
[22] Chen W, Zhai L, Liu H, et al.
Downregulation of lncRNA ZFAS1 inhibits the hallmarks of thyroid carcinoma via
the regulation of miR-302-3p on cyclin D1 [J]. Mol Med Rep, 2021, 23(1):2. DOI:
10.3892/mmr.2020.11640.
[23] Ghafouri-Fard S, Esmaeili M, Shoorei H,
et al. A comprehensive review of the role of long non-coding RNAs in organs
with an endocrine function [J]. Biomed Pharmacother, 2020, 125: 110027. DOI:
10.1016/j.biopha.2020.110027.
[24] 曹丽华,殷丹丹,夏成才,等. lncRNA TUG1在胰岛β细胞分泌胰岛素中的功能研究[J]. 现代生物医学进展,2017,17(25):4847-4851. DOI:10.13241/j.cnki.pmb.2017. 25.011.
[25] Wang X, Chang X, Zhang P, et al.
Aberrant expression of long non-coding RNAs in newly diagnosed type 2 diabetes
indicates potential roles in chronic inflammation and insulin resistance [J].
Cell Physiol Biochem, 2017, 43(6): 2367-2378. DOI: 10.1159/000484388.
[26] Bramswig NC, Everett LJ, Schug J, et al.
Epigenomic plasticity enables human pancreatic α to β cell reprogramming [J]. J
Clin Invest, 2013, 123(3):1275-1284. DOI: 10.1172/JCI66514.
[27] Morán I, Akerman I, van de Bunt M, et
al. Human β cell transcriptome analysis uncovers lncRNAs that are
tissue-specific, dynamically regulated, and abnormally expressed in type 2
diabetes [J]. Cell Metab, 2012, 16(4):435-448. DOI: 10.1016/j.cmet.2012.08.010.
[28] Pradas-Juni M, Hansmeier NR, Link JC, et
al. A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose
metabolism [J]. Nat Commun, 2020, 11(1): 644. DOI: 10.1038/s41467-020-14323-y.
[29] 方迎昕,周一军. 长链非编码RNA与胰岛素抵抗的关系[J]. 国际内分泌代谢杂志,2018,38(6):412-414,428.
DOI:10.3760/cma.j.issn.1673-4157.2018.06.013.
[30] Zhu X, Wu YB, Zhou J, et al.
Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing
FoxO1 expression [J]. Biochem Biophys Res Commun, 2016, 469(2): 319-325. DOI:
10.1016/j.bbrc.2015.11.048.
[31] Wang Y, Hu Y, Sun C, et al.
Down-regulation of Risa improves insulin sensitivity by enhancing autophagy
[J]. FASEB J, 2016, 30(9): 3133-3145. DOI: 10.1096/fj. 201500058R.
|