[1] Ahmadian
M, Suh JM, Hah N, et al. PPARγ signaling and metabolism: the good, the bad and
the future [J]. Nat Med, 2013, 19(5): 557-566. DOI: 10.1038/nm.3159.
[2] Rosen ED, Spiegelman BM. PPARgamma : a
nuclear regulator of metabolism, differentiation, and cell growth [J]. J Biol
Chem, 2001, 276(41): 37731-37734. DOI: 10.1074/jbc.R100034200.
[3] Espinoza SE, Wang CP, Tripathy D, et al.
Pioglitazone is equally effective for diabetes prevention in older versus
younger adults with impaired glucose tolerance [J]. Age (Dordr), 2016,
38(5-6):485-493. DOI: 10.1007/s11357-016-9946-6.
[4] Olefsky JM. Treatment of insulin
resistance with peroxisome proliferator-activated receptor gamma agonists [J].
J Clin Invest, 2000, 106(4): 467-472. DOI: 10.1172/JCI10843.
[5] Lu CJ, Sun Y, Muo CH, Chen RC, Chen PC,
Hsu CY. Risk of stroke with thiazolidinediones: a ten-year nationwide
population-based cohort study [J]. Cerebrovasc Dis, 2013, 36(2):145-151. DOI:
10.1159/000353679.
[6] de Jong M, van der Worp HB, van der
Graaf Y, et al. Pioglitazone and the secondary prevention of cardiovascular
disease. A meta-analysis of randomized-controlled trials [J]. Cardiovasc
Diabetol, 2017, 16(1):134. DOI: 10.1186/s12933-017-0617-4.
[7] Lebovitz HE. Thiazolidinediones: the
forgotten diabetes medications [J]. Curr Diab Rep, 2019, 19(12): 151. DOI:
10.1007/s11892-019-1270-y.
[8] He JH, Chen LX, Li H. Progress in the
discovery of naturally occurring anti-diabetic drugs and in the identification
of their molecular targets [J]. Fitoterapia, 2019, 134:270-289. DOI:
10.1016/j.fitote.2019.02.033.
[9] Yang SC, Hsu CY, Chou WL, Fang JY,
Chuang SY. Bioactive agent discovery from the natural compounds for the
treatment of type 2 diabetes rat model [J]. Molecules, 2020, 25(23): 5713. DOI:
10.3390/molecules25235713.
[10] Unuofin JO, Lebelo SL. Antioxidant
effects and mechanisms of medicinal plants and their bioactive compounds for
the prevention and treatment of type 2 diabetes: an updated review [J]. Oxid
Med Cell Longev, 2020, 2020: 1356893. DOI: 10.1155/2020/1356893.
[11] 程畅河,刘兰星,杨章坚,等. 青钱柳提取物抗糖尿病大鼠氧化应激作用的研究[J]. 国际医药卫生导报,2020,26(21):3243-3246.
DOI:10.3760/cma.j.issn.1007-1245.2020. 21.016.
[12] Zhao L, Ciallella HL, Aleksunes LM, et
al. Advancing computer-aided drug discovery (CADD) by big data and data-driven
machine learning modeling [J]. Drug Discov Today, 2020, 25(9): 1624-1638. DOI:
10.1016/j.drudis.2020.07.005.
[13] Alemán-González-Duhart D, Tamay-Cach F,
Correa-Basurto J, et al. In silico design, chemical synthesis and toxicological
evaluation of 1,3-thiazolidine-2,4-dione derivatives as PPARγ agonists [J].
Regul Toxicol Pharmacol, 2017, 86:25-32. DOI: 10.1016/j.yrtph. 2017.02.008.
[14] Baig MH, Ahmad K, Rabbani G, et al.
Computer aided drug design and its application to the development of potential
drugs for neurodegenerative disorders [J]. Curr Neuropharmacol, 2018, 16(6):
740-748. DOI: 10.2174/1570159X15666171016163510.
[15] Ahsan W. The journey of
thiazolidinediones as modulators of PPARs for the management of diabetes: a
current perspective [J]. Curr Pharm Des, 2019, 25(23): 2540-2554. DOI:
10.2174/13816128256661907160- 94852.
[16] 王俊菊,高木珍,杨晓伟. 高新技术在兽药研发中的应用[J]. 中国动物保健,2011,13(4):24-26,28. DOI:10.3969/j.issn.1008-4754.2011.04.010.
[17] O'Boyle NM, Banck M, James CA, et al.
Open Babel: an open chemical toolbox [J]. J Cheminform, 2011, 3: 33. DOI:
10.1186/1758-2946-3-33.
[18] Hemalatha CN, Muthkumar VA. Application
of 3D QSAR and docking studies in optimization of perylene diimides as anti
cancer agent [J]. Indian J Pharm Educ, 2018, 52(4): 666-675. DOI:
10.5530/ijper.52.4.77
[19] Casset F, Roux F, Mouchet P, et al. A
peptide mimetic of an anti-CD4 monoclonal antibody by rational design [J].
Biochem Biophys Res Commun, 2003, 307(1):198-205. DOI:
10.1016/s0006-291x(03)01131-8.
[20] Rigsby RE, Parker AB. Using the PyMOL
application to reinforce visual understanding of protein structure [J]. Biochem
Mol Biol Educ, 2016, 44(5):433-437. DOI: 10.1002/bmb.20966.
[21] 沈清清,刘芳,赵芳,等. MreB蛋白与actin蛋白的同源建模和进化关系研究[J]. 文山学院学报,2015, 28(3):31-37. DOI:10.3969/j.issn.1674-9200.2015.03.009.
[22] Hickson RP, Cole AL, Dusetzina SB.
Implications of removing rosiglitazone's black box warning and restricted
access program on the uptake of thiazolidinediones and dipeptidyl peptidase-4
inhibitors among patients with type 2 diabetes [J]. J Manag Care Spec Pharm,
2019, 25(1):72-79. DOI: 10.18553/jmcp.2019.25.1.072.
[23] DeFronzo RA, Inzucchi S, Abdul-Ghani M,
et al. Pioglitazone: the forgotten, cost-effective cardioprotective drug for
type 2 diabetes [J]. Diab Vasc Dis Res, 2019, 16(2):133-143. DOI:
10.1177/1479164118825376.
[24] Alam F, Islam MA, Mohamed M, et al.
Efficacy and safety of pioglitazone monotherapy in type 2 diabetes mellitus: a
systematic review and meta-analysis of randomised controlled trials [J]. Sci
Rep, 2019, 9(1):5389. DOI: 10.1038/s41598-019-41854-2.
[25] Patel DK, Kumar R, Laloo D, et al.
Diabetes mellitus: an overview on its pharmacological aspects and reported
medicinal plants having antidiabetic activity [J]. Asian Pac J Trop Biomed,
2012, 2(5): 411-420. DOI: 10.1016/S2221-1691(12)60067-7.
[26] Swinney DC, Anthony J. How were new
medicines discovered? [J]. Nat Rev Drug Discov, 2011, 10(7): 507-519. DOI:
10.1038/nrd3480.
[27] Gao Y, Fang H, Fang L, et al. The
modification and design of antimicrobial peptide [J]. Curr Pharm Des, 2018,
24(8):904-910. DOI: 10.2174/1381612824666180213130318.
[28] Chen YC. Beware of docking! [J]. Trends
Pharmacol Sci, 2015, 36(2): 78-95. DOI: 10.1016/j.tips.2014.12.001.
[29] Mahmoud AM. Hesperidin protects against
cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation
of oxidative stress and inflammation [J]. Can J Physiol Pharmacol,
2014,92(9):717-724. DOI: 10.1139/cjpp-2014-0204.
[30] Mahmoud AM, Mohammed HM, Khadrawy SM, et
al. Hesperidin protects against chemically induced hepatocarcinogenesis via
modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration
of oxidative stress and inflammation [J]. Chem Biol Interact, 2017, 277:
146-158. DOI: 10.1016/j.cbi.2017.09.015.
[31] Agrawal YO, Sharma PK, Shrivastava B, et
al. Hesperidin produces cardioprotective activity via PPAR-γ pathway in
ischemic heart disease model in diabetic rats [J]. PLoS One, 2014,
9(11):e111212. DOI: 10.1371/journal.pone.0111212.
[32] Bhargava P, Verma VK, Malik S, et al.
Hesperidin regresses cardiac hypertrophy by virtue of PPAR-γ agonistic,
anti-inflammatory, antiapoptotic, and antioxidant properties [J]. J Biochem Mol
Toxicol, 2019, 33(5):e22283. DOI 10.1002/jbt.22283.
[33] Elshazly SM, Abd El Motteleb DM, Ibrahim
IAAE. Hesperidin protects against stress induced gastric ulcer through
regulation of peroxisome proliferator activator receptor gamma in diabetic rats
[J]. Chem Biol Interact, 2018, 291: 153-161. DOI: 10.1016/j.cbi.2018.06.027.
[34] Ma H, Feng X, Ding S. Hesperetin
attenuates ventilator-induced acute lung injury through inhibition of
NF-κB-mediated inflammation [J]. Eur J Pharmacol, 2015, 769:333-41. DOI:
10.1016/j.ejphar.2015.11.038.
[35] 朱心瑶,刘治国,杨雪,等. 牛蒡子苷对胰岛素抵抗型小鼠糖脂代谢调节及心肌保护的作用[J]. 徐州医科大学学报,2021,41(2):102-106.
DOI:10.3969/j.issn.2096-3882. 2021.02.005.
|