International Medicine and Health Guidance News ›› 2025, Vol. 31 ›› Issue (11): 1812-1815.DOI: 10.3760/cma.j.cn441417-20250106-11010
• Special Column of Cardiovascular Diseases • Previous Articles Next Articles
Research progress of P13K/AKT/KDM5A pathway in atrial fibrillation
Zhao Ke, Liu Zhenxing, Shi Dayu, Xu Huipu
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, Binzhou 256600,China
Received:
2025-01-06
Online:
2025-06-01
Published:
2025-06-12
Contact:
Xu Huipu, Email: xuhuipu1967@163.com
Supported by:
Shandong Province Medical and Health Science and Technology Project(202303010661)
PI3K/Akt/KDM5A通路在心房颤动中的研究进展
赵珂 刘振兴 时大宇 徐会圃
滨州医学院附属医院心血管内科,滨州 256600
通讯作者:
徐会圃,Email:xuhuip1967@163.com
基金资助:
山东省医药卫生科技项目(202303010661)
Zhao Ke, Liu Zhenxing, Shi Dayu, Xu Huipu.
Research progress of P13K/AKT/KDM5A pathway in atrial fibrillation [J]. International Medicine and Health Guidance News, 2025, 31(11): 1812-1815.
赵珂 刘振兴 时大宇 徐会圃.
PI3K/Akt/KDM5A通路在心房颤动中的研究进展 [J]. 国际医药卫生导报, 2025, 31(11): 1812-1815.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.cn441417-20250106-11010
[1]Lau DH, Linz D, Sanders P. New findings in atrial fibrillation mechanisms[J]. Card Electrophysiol Clin, 2019, 11(4): 563-571. DOI: 10.1016/j.ccep.2019.08.007. [2]Staerk L, Sherer JA, Ko D, et al. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes[J]. Circ Res, 2017, 120(9): 1501-1517. DOI: 10.1161/CIRCRESAHA.117.309732. [3]Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS[J]. Eur Heart J, 2016, 37(38): 2893-2962. DOI: 10.1093/eurheartj/ehw210. [4]Gudbjartsson DF, Holm H, Sulem P, et al. A frameshift deletion in the sarcomere gene MYL4 causes early-onset familial atrial fibrillation[J]. Eur Heart J, 2017, 38(1): 27-34. DOI: 10.1093/eurheartj/ehw379. [5]Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation[J]. JACC Clin Electrophysiol, 2017, 3(5): 425-435. DOI: 10.1016/j.jacep.2017.03.002. [6]Gourdie RG, Dimmeler S, Kohl P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease[J]. Nat Rev Drug Discov, 2016, 15(9): 620-638. DOI: 10.1038/nrd.2016.89. [7]Qin W, Cao L, Massey IY. Role of PI3K/Akt signaling pathway in cardiac fibrosis[J]. Mol Cell Biochem, 2021, 476(11): 4045-4059. DOI: 10.1007/s11010-021-04219-w. [8]Moore-Morris T, Cattaneo P, Puceat M, et al. Origins of cardiac fibroblasts[J]. J Mol Cell Cardiol, 2016, 91: 1-5. DOI: 10.1016/j.yjmcc.2015.12.031. [9]Lajiness JD, Conway SJ. The dynamic role of cardiac fibroblasts in development and disease[J]. J Cardiovasc Transl Res, 2012, 5(6): 739-748. DOI: 10.1007/s12265-012-9394-3. [10]Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis[J]. J Cell Physiol, 2010, 225(3):631-637. DOI: 10.1002/jcp.22322. [11]Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis[J]. J Clin Invest, 2017, 127(10): 3770-3783. DOI: 10.1172/JCI94753. [12]Meng Q, Bhandary B, Bhuiyan MS, et al. Myofibroblast-specific TGFβ receptor II signaling in the fibrotic response to cardiac myosin binding protein C-induced cardiomyopathy[J]. Circ Res, 2018, 123(12): 1285-1297. DOI: 10.1161/CIRCRESAHA.118.313089. [13]Vasquez C, Morley GE. The origin and arrhythmogenic potential of fibroblasts in cardiac disease[J]. J Cardiovasc Transl Res, 2012, 5(6): 760-767. DOI: 10.1007/s12265-012-9408-1. [14]Askar SF, Bingen BO, Schalij MJ, et al. Similar arrhythmicity in hypertrophic and fibrotic cardiac cultures caused by distinct substrate-specific mechanisms[J]. Cardiovasc Res, 2013, 97(1):171-181. DOI: 10.1093/cvr/cvs290. [15]闫景顺,朱林平,张红霞,等.中医药调控心肌纤维化相关信号通路研究进展[J].中国实验方剂学杂志,2024,30(13):230-239. DOI:10.13422/j.cnki.syfjx.20240603. [16]Chiang GG, Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at ser-2448 is mediated by p70S6 kinase[J]. J Biol Chem, 2005, 280(27): 25485-25490. DOI: 10.1074/jbc.M501707200. [17]Sekulić A, Hudson CC, Homme JL, et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells[J]. Cancer Res, 2000, 60(13): 3504-3513. [18]Shi B, Ma M, Zheng Y, et al. mTOR and Beclin1: Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury[J]. J Cell Physiol, 2019, 234(8): 12562-12568. DOI: 10.1002/jcp.28125. [19]Baretić D, Williams RL. The structural basis for mTOR function[J]. Semin Cell Dev Biol, 2014, 36:91-101. DOI: 10.1016/j.semcdb.2014.09.024. [20]Huang W, Zhou P, Zou X, et al. Emodin ameliorates myocardial fibrosis in mice by inactivating the ROS/PI3K/Akt/mTOR axis[J]. Clin Exp Hypertens, 2024, 46(1): 2326022. DOI: 10.1080/10641963.2024.2326022. [21]Kajstura J, Urbanek K, Perl S, et al. Cardiomyogenesis in the adult human heart[J]. Circ Res, 2010, 107(2): 305-315. DOI: 10.1161/CIRCRESAHA.110.223024. [22]McNab TC, Tseng YT, Stabila JP, et al. Liganded and unliganded steroid receptor modulation of beta 1 adrenergic receptor gene transcription[J]. Pediatr Res, 2001, 50(5): 575-580. DOI: 10.1203/00006450-200111000-00007. [23]Wadhawan R, Tseng YT, Stabila J, et al. Regulation of cardiac beta 1-adrenergic receptor transcription during the developmental transition[J]. Am J Physiol Heart Circ Physiol, 2003, 284(6): H2146-H2152. DOI: 10.1152/ajpheart.00929.2002. [24]Takahashi-Yanaga F. Roles of glycogen synthase kinase-3 (GSK-3) in cardiac development and heart disease[J]. J UOEH, 2018, 40(2): 147-156. DOI: 10.7888/juoeh.40.147. [25]Hailiwu R, Zeng H, Zhan M, et al. Salvianolic acid a diminishes LDHA-driven aerobic glycolysis to restrain myofibroblasts activation and cardiac fibrosis via blocking Akt/GSK-3β/HIF-1α axis[J]. Phytother Res, 2023, 37(10): 4540-4556. DOI: 10.1002/ptr.7925. [26]Xin Z, Ma Z, Hu W, et al. FOXO1/3: Potential suppressors of fibrosis[J]. Ageing Res Rev, 2018, 41:42-52. DOI: 10.1016/j.arr.2017.11.002. [27]Ricke-Hoch M, Bultmann I, Stapel B, et al. Opposing roles of Akt and STAT3 in the protection of the maternal heart from peripartum stress[J]. Cardiovasc Res, 2014, 101(4): 587-596. DOI: 10.1093/cvr/cvu010. [28]Pramod S, Shivakumar K. Mechanisms in cardiac fibroblast growth: an obligate role for skp2 and FOXO3a in ERK1/2 MAPK-dependent regulation of p27kip1[J]. Am J Physiol Heart Circ Physiol, 2014, 306(6): H844-H855. DOI: 10.1152/ajpheart.00933.2013. [29]Li CY, Wang W, Leung CH, et al. KDM5 family as therapeutic targets in breast cancer: Pathogenesis and therapeutic opportunities and challenges[J]. Mol Cancer, 2024, 23(1): 109. DOI: 10.1186/s12943-024-02011-0. [30]Spangle JM, Dreijerink KM, Groner AC, et al. PI3K/AKT signaling regulates H3K4 methylation in breast cancer[J]. Cell Rep, 2016, 15(12): 2692-2704. DOI: 10.1016/j.celrep.2016.05.046. [31]Horton JR, Engstrom A, Zoeller EL, et al. Characterization of a linked jumonji domain of the KDM5/JARID1 family of histone h3 lysine 4 demethylases[J]. J Biol Chem, 2016, 291(6): 2631-2646. DOI: 10.1074/jbc.M115.698449. [32]Blair LP, Cao J, Zou MR, et al. Epigenetic regulation by lysine demethylase 5 (KDM5) enzymes in cancer[J]. Cancers (Basel), 2011, 3(1): 1383-1404. DOI: 10.3390/cancers3011383. [33]Paolicchi E, Crea F, Farrar WL, et al. Histone lysine demethylases in breast cancer[J]. Crit Rev Oncol Hematol, 2013, 86(2): 97-103. DOI: 10.1016/j.critrevonc.2012.11.008. [34]Guo L, Guo YY, Li BY, et al. Histone demethylase KDM5A is transactivated by the transcription factor C/EBPβ and promotes preadipocyte differentiation by inhibiting wnt/β-catenin signaling[J]. J Biol Chem, 2019, 294(24): 9642-9654. DOI: 10.1074/jbc.RA119.008419. [35]Yang X, Bam M, Becker W, et al. Long noncoding RNA AW112010 promotes the differentiation of inflammatory T cells by suppressing IL-10 expression through histone demethylation[J]. J Immunol, 2020, 205(4):987-993. DOI: 10.4049/jimmunol.2000330. [36]Li QM, Li JL, Feng ZH, et al. Effect of histone demethylase KDM5A on the odontogenic differentiation of human dental pulp cells[J]. Bioengineered, 2020, 11(1): 449-462. DOI: 10.1080/21655979.2020.1743536. [37]Zhang X, Wang W, Wang Y, et al. Extracellular vesicle-encapsulated miR-29b-3p released from bone marrow-derived mesenchymal stem cells underpins osteogenic differentiation[J]. Front Cell Dev Biol, 2021, 8: 581545. DOI: 10.3389/fcell.2020.581545. [38]Kong SY, Kim W, Lee HR, et al. The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells[J]. FASEB J, 2018, 32(2): 1108-1119. DOI: 10.1096/fj.201700780R. [39]Pointon JJ, Harvey D, Karaderi T, et al. The histone demethylase JARID1A is associated with susceptibility to ankylosing spondylitis[J]. Genes Immun, 2011, 12(5): 395-398. DOI: 10.1038/gene.2011.23. [40]Kirtana R, Manna S, Patra SK. Molecular mechanisms of KDM5A in cellular functions: facets during development and disease[J]. Exp Cell Res, 2020, 396(2): 112314. DOI: 10.1016/j.yexcr.2020.112314. [41]Pointon JJ, Harvey D, Karaderi T, et al. The histone demethylase JARID1A is associated with susceptibility to ankylosing spondylitis[J]. Genes Immun, 2011, 12(5): 395-398. DOI: 10.1038/gene.2011.23. [42]Heuser M, Yun H, Thol F. Epigenetics in myelodysplastic syndromes[J]. Semin Cancer Biol, 2018, 51:170-179. DOI: 10.1016/j.semcancer.2017.07.009. [43]魏婷,亓先杰,张旭,等.基于ChIP-seq技术分析心肌成纤维细胞中KDM5A调控的下游靶基因网络[J].中华全科医学,2023,21(9):1474-1477. DOI:10.16766/j.cnki.issn.1674-4152.003149. [44]张旭.基于转录组学研究AngⅡ/PI3K/Akt/KDM5A通路在心脏纤维化中的作用[D].蚌埠医学院,2023.DOI:10.26925/d.cnki.gbbyc.2023.000063. |
[1] |
Zhang Guibin, Deng Yajun, Chen Xinqing, Cao Meng, Xu Yan.
Evaluation of the effect of percutaneous corner vertebroplasty in the treatment of osteoporotic vertebral compression fractures [J]. International Medicine and Health Guidance News, 2025, 31(9): 1410-1415. |
[2] |
Zhang Bo, Zhang Bin.
Efficacy of modified PVP in the treatment of senile patients with mid-thoracic OVCF complicated with degenerative spinal disease [J]. International Medicine and Health Guidance News, 2025, 31(9): 1415-1420. |
[3] |
Yang Yuetai, Jia Benzhi.
Correlation analysis between bone cement/vertebral body volume ratio and adjacent vertebral compression fractures after percutaneous vertebroplasty [J]. International Medicine and Health Guidance News, 2025, 31(9): 1421-1425. |
[4] |
Chen Xiaoyan, Zhou Guojun, Shi Kui, Li Ziqiang, Sun Feifei.
Risk factors analysis of recurrent fracture in elderly patients with osteoporotic thoracolumbar compression fracture after PVP [J]. International Medicine and Health Guidance News, 2025, 31(9): 1426-1429. |
[5] |
Ren Fei, Zhang Haiping, Gao Shansong.
Construction and validation of a risk model for adjacent segment disease after lumbar fusion surgery based on preoperative spinal - pelvic parameters and intervertebral disc characteristics [J]. International Medicine and Health Guidance News, 2025, 31(9): 1430-1435. |
[6] |
Yang Li, Jin Xingshan.
Clinical effect of Qidong Yixin Granules combined with core muscle group training on patients with spinal cord injury [J]. International Medicine and Health Guidance News, 2025, 31(9): 1435-1439. |
[7] |
Ma Hang, Zhang Bing.
Levels of serum S100A12 and peripheral blood RDW and Mono% and their clinical significance in patients with spinal tuberculosis and their clinical significance [J]. International Medicine and Health Guidance News, 2025, 31(9): 1440-1444. |
[8] |
Liu Qing, Ren Wenjuan, Zhong Hongping.
Influencing factors of intravenous immunoglobulin resistance and coronary artery damage in children with Kawasaki disease [J]. International Medicine and Health Guidance News, 2025, 31(9): 1451-1456. |
[9] |
Jiang Hong, Xue Dongqing.
Effect of infliximab combined with tacrolimus on children with Kawasaki disease resistant to initial immunoglobulin therapy and its impact on immune function [J]. International Medicine and Health Guidance News, 2025, 31(9): 1456-1460. |
[10] |
Zhi Danlin, Huo Chaokui Lu, Jianmei, Xia Ruiqing, Cheng Hao, Cao Danmin.
Advances in intraocular lens refractive power calculation for cataract surgery following radial keratotomy [J]. International Medicine and Health Guidance News, 2025, 31(9): 1461-1465. |
[11] |
Zhao Zhou, Liu Weipeng, Li Zongrui, Wang Ruizhi, Hu Baoguang.
Research status of hypertensive rat model [J]. International Medicine and Health Guidance News, 2025, 31(9): 1465-1470. |
[12] |
Zan Xingchun.
Research progress and prospects of Tongdu Tiaoshen acupuncture in the treatment of post-stroke dysphagia [J]. International Medicine and Health Guidance News, 2025, 31(9): 1470-1474. |
[13] |
Sang Yang, Han Xinpeng, Yan Yuling, Zhang Shaoyi.
Study on the mechanism of CD147 in regulating airway remodeling in asthma rats based on Akt-FoxO3-NF-κB signaling axis [J]. International Medicine and Health Guidance News, 2025, 31(9): 1482-1488. |
[14] |
Wu Yali, Fu Xiaoping, Ding Dawei, Xu Ning'an, Zhou Yuanyuan.
Risk factors related to children attention deficit hyperactivity disorder and construction of prediction model [J]. International Medicine and Health Guidance News, 2025, 31(9): 1489-1494. |
[15] |
Wang Qingyuan, Fang Yuanlong, Wang Zhiqin, Huang Rong, Tian Song, Yuan Like, Ge Wuping, Zhu Xiaochun, Xiao Shangjie, Zhou Jialiang.
Analysis of diagnosis and treatment of secondary intestinal stenosis after conservative treatment of neonatal necrotizing enterocolitis [J]. International Medicine and Health Guidance News, 2025, 31(9): 1495-1498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||