[1] Miller RL, Grayson MH, Strothman K. Advances in asthma: new understandings of asthma's natural history, risk factors, underlying mechanisms, and clinical management[J]. J Allergy Clin Immunol, 2021, 148(6):1430-1441. DOI: 10.1016/j.jaci.2021.10.001.
[2] Gans MD, Gavrilova T. Understanding the immunology of asthma: pathophysiology, biomarkers, and treatments for asthma endotypes[J]. Paediatr Respir Rev, 2020, 36:118-127. DOI: 10.1016/j.prrv.2019.08.002.
[3] Sharma S, Gerber AN, Kraft M, et al. Asthma pathogenesis: phenotypes, therapies, and gaps: summary of the aspen lung conference 2023[J]. Am J Respir Cell Mol Biol, 2024, 71(2):154-168. DOI: 10.1165/rcmb.2024-0082WS.
[4] Li Z, Cheng T, Guo Y, et al. CD147 induces asthmatic airway remodeling and activation of circulating fibrocytes in a mouse model of asthma[J]. Respir Res, 2024, 25(1):6. DOI: 10.1186/s12931-023-02646-5.
[5]宋思雨,丁露,李雅馨,等.基于网络药理学探讨补阳还五汤治疗特发性肺纤维化的生物学机制[J].中国老年学杂志,2022,42(12):2988-2994.DOI:10.3969/j.issn.1005-9202. 2022.12.040.
[6] Yan Y, Liu L, Dou Z, et al. Soufeng Yuchuan decoction mitigates the ovalbumin-induced lung damage in a rat model of asthma[J]. Biomed Pharmacother, 2020, 125:109933. DOI: 10.1016/j.biopha.2020.109933.
[7]胡冰,张艺森.基于Akt/ERK/NF-κB信号通路探究松果菊苷对缺氧性肺动脉高压新生大鼠肺血管重塑的影响[J].中草药,2022,53(23):7449-7454.DOI:10.7501/j.issn. 0253-2670.2022.23.015.
[8]王苗庆,张明阳,陈若,等.CD147抗体对肺间质纤维化小鼠体内Treg细胞的影响[J].空军军医大学学报,2022,43(6):715-719.DOI:10.13276/j.issn.2097-1656.2022.06.011.
[9]刘健.支气管哮喘气道重塑机制的研究进展[J].中国现代医学杂志,2022,32(12):51-54.DOI:10.3969/j.issn. 1005-8982.2022.12.009.
[10] Guindolet D, Gabison EE. Role of CD147 (EMMPRIN/basigin) in tissue remodeling[J]. Anat Rec (Hoboken), 2020, 303(6):1584-1589. DOI: 10.1002/ar.24089.
[11] Chuliá-Peris L, Carreres-Rey C, Gabasa M, et al. Matrix metalloproteinases and their inhibitors in pulmonary fibrosis: EMMPRIN/CD147 comes into play[J]. Int J Mol Sci, 2022, 23(13):6894. DOI: 10.3390/ijms23136894.
[12] Wu J, Chen L, Qin C, et al. CD147 contributes to SARS-CoV-2-induced pulmonary fibrosis[J]. Signal Transduct Target Ther, 2022, 7(1):382. DOI: 10.1038/s41392-022-01230-5.
[13] Yu Q, Yang D, Chen X, et al. CD147 increases mucus secretion induced by cigarette smoke in COPD[J]. BMC Pulm Med, 2019, 19(1):29. DOI: 10.1186/s12890-019-0791-0.
[14]韩勃,左俊丽,乔廉洁.花青素调控CD147/MMP-9通路改善哮喘模型小鼠气道炎症的作用研究[J].国际医药卫生导报,2024,30(22):3828-3833.DOI:10.3760/cma.j.issn.1007-1245.2024.22.028.
[15]雷俊.牛蒡子苷元抑制TLR4/TRAF6/NF-κB信号通路对哮喘模型大鼠气道重塑和Th1/Th2免疫平衡的影响[J].免疫学杂志,2023,39(1):12-20.DOI:10.13431/j.cnki.immunol.j.20230002.
[16] Scott G, Asrat S, Allinne J, et al. IL-4 and IL-13, not eosinophils, drive type 2 airway inflammation, remodeling and lung function decline[J]. Cytokine, 2023, 162:156091. DOI: 10.1016/j.cyto.2022.156091.
[17] Jiang T, Zhao D, Zheng Z, et al. Sigma-1 receptor alleviates airway inflammation and airway remodeling through AMPK/CXCR4 signal pathway[J]. Inflammation, 2022, 45(3):1298-1312. DOI: 10.1007/s10753-022-01621-4.
[18]向双娣,程林辉,喻强强,等.益气温阳护卫汤调控PI3K/Akt/mTOR自噬途径治疗支气管哮喘大鼠机制[J].中国实验方剂学杂志,2023,29(14):38-46.DOI:10.13422/j.cnki.syfjx.20230637.
[19] Li X, Yang N. Exosome miR-223-3p in the bone marrow-derived mesenchymal stem cells alleviates the inflammation and airway remodeling through NLRP3-induced ASC/caspase-1/GSDMD signaling pathway[J]. Int Immunopharmacol, 2023, 123:110746. DOI: 10.1016/j.intimp.2023.110746.
[20] Savin IA, Zenkova MA, Sen'kova AV. Bronchial asthma, airway remodeling and lung fibrosis as successive steps of one process[J]. Int J Mol Sci, 2023, 24(22):16042. DOI: 10.3390/ijms242216042.
[21] Xu J, Yu Z, Liu X. Angiotensin-(1-7) suppresses airway inflammation and airway remodeling via inhibiting ATG5 in allergic asthma[J]. BMC Pulm Med, 2023, 23(1):422. DOI: 10.1186/s12890-023-02719-7.
[22] Dong L, Wang Y, Zheng T, et al. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice[J]. Stem Cell Res Ther, 2021, 12(1):4. DOI: 10.1186/s13287-020-02072-0.
[23] Jia C, Yang M, Xiao G, et al. ESL attenuates BLM-induced IPF in mice: dual mediation of the TLR4/NF-κB and TGF-β1/PI3K/Akt/FOXO3a pathways[J]. Phytomedicine, 2024, 132:155545. DOI: 10.1016/j.phymed.2024.155545.
[24] Guo W, Hu Z. SRPK1 promotes sepsis-induced acute lung injury via regulating PI3K/AKT/FOXO3 signaling[J]. Immunopharmacol Immunotoxicol, 2023, 45(2):203-212. DOI: 10.1080/08923973.2022.2134789.
[25] Ma Z, Yu R, Zhu Q, et al. CXCL16/CXCR6 axis promotes bleomycin-induced fibrotic process in MRC-5 cells via the PI3K/AKT/FOXO3a pathway[J]. Int Immunopharmacol, 2020, 81:106035. DOI: 10.1016/j.intimp.2019.106035.
|