International Medicine and Health Guidance News ›› 2025, Vol. 31 ›› Issue (9): 1465-1470.DOI: 10.3760/cma.j.cn441417-20241010-09012
• New Medical Advances • Previous Articles Next Articles
Research status of hypertensive rat model
Zhao Zhou, Liu Weipeng, Li Zongrui, Wang Ruizhi, Hu Baoguang
Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2024-10-10
Online:
2025-05-01
Published:
2025-05-20
Contact:
Hu Baoguang, Email: hbglmn@163.com
Supported by:
Shandong Natural Science Foundation (ZR2017LH050)
高血压大鼠模型的研究现状
赵洲 刘为朋 李宗睿 王睿智 胡宝光
滨州医学院附属医院胃肠外科,滨州 256603
通讯作者:
胡宝光,Email:hbglmn@163.com
基金资助:
山东省自然科学基金(ZR2017LH050)
Zhao Zhou, Liu Weipeng, Li Zongrui, Wang Ruizhi, Hu Baoguang.
Research status of hypertensive rat model [J]. International Medicine and Health Guidance News, 2025, 31(9): 1465-1470.
赵洲 刘为朋 李宗睿 王睿智 胡宝光.
高血压大鼠模型的研究现状 [J]. 国际医药卫生导报, 2025, 31(9): 1465-1470.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.cn441417-20241010-09012
[1] Wang T, Cai X, Li J, et al. Proteomics analysis in myocardium of spontaneously hypertensive rats[J]. Sci Rep, 2023, 13(1):276. DOI: 10.1038/s41598-023-27590-8. [2] Yin R, Yin L, Li L, et al. Hypertension in China: burdens, guidelines and policy responses: a state-of-the-art review[J]. J Hum Hypertens, 2022, 36(2):126-134. DOI: 10.1038/s41371-021-00570-z. [3] Mingji C, Onakpoya IJ, Perera R, et al. Relationship between altitude and the prevalence of hypertension in Tibet: a systematic review[J]. Heart, 2015, 101(13):1054-1060. DOI: 10.1136/heartjnl-2014-307158. [4] Pravenec M, Kurtz TW. Recent advances in genetics of the spontaneously hypertensive rat[J]. Curr Hypertens Rep, 2010, 12(1):5-9. DOI: 10.1007/s11906-009-0083-9. [5] Kozłowska A, Wojtacha P, Równiak M, et al. Differences in serum steroid hormones concentrations in Spontaneously Hypertensive Rats (SHR) - an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD) [J]. Physiol Res, 2019, 68(1):25-36. DOI: 10.33549/physiolres.933907. [6] Langdale CL, Degoski D, Milliken PH, et al. Voiding behavior in awake unrestrained untethered spontaneously hypertensive and Wistar control rats[J]. Am J Physiol Renal Physiol, 2021, 321(2):F195-F206. DOI: 10.1152/ajprenal.00564.2020. [7] Stanzione R, Forte M, Cotugno M, et al. Beneficial effects of citrus bergamia polyphenolic fraction on saline load-induced injury in primary cerebral endothelial cells from the stroke-prone spontaneously hypertensive rat model[J]. Nutrients, 2023, 15(6):1334. DOI: 10.3390/nu15061334. [8] Kockskämper J, Pluteanu F. Left atrial myocardium in arterial hypertension[J]. Cells, 2022, 11(19):3157. DOI: 10.3390/cells11193157. [9] Matsuo H, Kawakami K, Ohara H, et al. Apolipoprotein E-depletion accelerates arterial fat deposition in the spontaneously hypertensive rat[J]. Exp Anim, 2023, 72(4):439-445. DOI: 10.1538/expanim.23-0012. [10] Li HB, Xu ML, Du MM, et al. Curcumin ameliorates hypertension via gut-brain communication in spontaneously hypertensive rat[J]. Toxicol Appl Pharmacol, 2021, 429:115701. DOI: 10.1016/j.taap.2021.115701. [11] Onizuka S, Ito M, Sekine I, et al. Spontaneous pancreatitis in spontaneously hypertensive rats[J]. Pancreas, 1994, 9(1):54-61. DOI: 10.1097/00006676-199401000-00008. [12] Dai FX, Skopec J, Diederich A, et al. Prostaglandin H2 and thromboxane A2 are contractile factors in intrarenal arteries of spontaneously hypertensive rats[J]. Hypertension, 1992, 19(6 Pt 2):795-798. DOI: 10.1161/01.hyp.19.6.795. [13] Tantisira MH, Sjövall H, Jodal M, et al. Intestinal fluid transport in the small intestine of normotensive and spontaneously hypertensive rats: the importance of enteric nerves, chloride and bicarbonate secretion[J]. Acta Physiol Scand, 1990, 138(2):213-219. DOI: 10.1111/j.1748-1716.1990.tb08835.x. [14] Wang XL, Chen WJ, Jin R, et al. Engineered probiotics Clostridium butyricum-pMTL007-GLP-1 improves blood pressure via producing GLP-1 and modulating gut microbiota in spontaneous hypertension rat models[J]. Microb Biotechnol, 2023, 16(4):799-812. DOI: 10.1111/1751-7915.14196. [15] Dirr EW, Jiracek LG, Baekey DM, et al. Subdiaphragmatic vagal nerve stimulation attenuates the development of hypertension and alters nucleus of the solitary tract transcriptional networks in the spontaneously hypertensive rat[J]. Physiol Genomics, 2023, 55(12):606-617. DOI: 10.1152/physiolgenomics.00016.2023. [16] Khan AA, Sundar P, Natarajan B, et al. An evolutionarily-conserved promoter allele governs HMG-CoA reductase expression in spontaneously hypertensive rat[J]. J Mol Cell Cardiol, 2021, 158:140-152. DOI: 10.1016/j.yjmcc.2021.05.017. [17] Dikmenoğlu Falkmarken NH, Arihan O, Iskit AB. Comparison of endothelin and nitric oxide synthase blockers on hemorheological parameters in endotoxemic rats[J]. Turk J Med Sci, 2017, 47(3):1045-1052. DOI: 10.3906/sag-1607-19. [18] Boultadakis A, Pitsikas N. Effects of the nitric oxide synthase inhibitor L-NAME on recognition and spatial memory deficits produced by different NMDA receptor antagonists in the rat[J]. Neuropsychopharmacology, 2010, 35(12):2357-2366. DOI: 10.1038/npp.2010.109. [19] Yang S, Song L, Shi X, et al. Ameliorative effects of pre-eclampsia by quercetin supplement to aspirin in a rat model induced by L-NAME[J]. Biomed Pharmacother, 2019, 116:108969. DOI: 10.1016/j.biopha.2019.108969. [20] Ntchapda F, Bonabe C, Atsamo AD, et al. Effect of aqueous extract of adansonia digitata stem bark on the development of hypertension in L-NAME-induced hypertensive rat model[J]. Evid Based Complement Alternat Med, 2020, 2020:3678469. DOI: 10.1155/2020/3678469. [21] Greish SM, Abdel-Hady Z, Mohammed SS, et al. Protective potential of curcumin in L-NAME-induced hypertensive rat model: AT1R, mitochondrial DNA synergy[J]. Int J Physiol Pathophysiol Pharmacol, 2020, 12(5):134-146. [22] Aluko EO, Omobowale TO, Oyagbemi AA, et al. Anti-lipidemic effect of fractions of peristrophe bivalvis leaf in NG-nitro-L-arginine methyl ester (L-NAME) treated rats[J]. Drug Res (Stuttg), 2020, 70(5):214-225. DOI: 10.1055/a-1136-6806. [23] Taguchi K. Editorial Comment to High-salt diet promotes crystal deposition through hypertension in Dahl salt-sensitive rat model[J]. Int J Urol, 2019, 26(8):847. DOI: 10.1111/iju.14049. [24] Chakraborty S, Galla S, Cheng X, et al. Salt-responsive metabolite, β-hydroxybutyrate, attenuates hypertension[J]. Cell Rep, 2018, 25(3):677-689.e4. DOI: 10.1016/j.celrep.2018.09.058. [25] Li Y, Salih Ibrahim RM, Chi HL, et al. Altered gut microbiota is involved in the anti-hypertensive effects of vitamin C in spontaneously hypertensive rat[J]. Mol Nutr Food Res, 2021, 65(7):e2000885. DOI: 10.1002/mnfr.202000885. [26] Boberg U, Morsing P, Persson AE. Renal response to volume depletion and expansion in Milan hypertensive rats[J]. Acta Physiol Scand, 1992, 145(3):261-265. DOI: 10.1111/j.1748-1716.1992.tb09363.x. [27] Ge Y, Fan F, Didion SP, et al. Impaired myogenic response of the afferent arteriole contributes to the increased susceptibility to renal disease in Milan normotensive rats[J]. Physiol Rep, 2017, 5(3):e13089. DOI: 10.14814/phy2.13089. [28] Ben-Shabat M, Awad-Igbaria Y, Sela S, et al. Predisposition to cortical neurodegenerative changes in brains of hypertension prone rats[J]. J Transl Med, 2023, 21(1):51. DOI: 10.1186/s12967-023-03916-y. [29] 曹浩,吉霆威,兰琴,等.经腹肾次全切建立大鼠心肾综合征模型[J].中华医学杂志,2019,99(6):447-452. DOI:10.3760/cma.j.issn.0376-2491.2019.06.013. [30] Jin X, Kim WB, Kim MN, et al. Oestrogen inhibits salt-dependent hypertension by suppressing GABAergic excitation in magnocellular AVP neurons[J]. Cardiovasc Res, 2021, 117(10):2263-2274. DOI: 10.1093/cvr/cvaa271. [31] Bigalke JA, Gao H, Chen QH, et al. Activation of orexin 1 receptors in the paraventricular nucleus contributes to the development of deoxycorticosterone acetate-salt hypertension through regulation of vasopressin[J]. Front Physiol, 2021, 12:641331. DOI: 10.3389/fphys.2021.641331. [32] Yan FR, Zhu ZL, Mu YP, et al. Increased caveolin-1 expression enhances the receptor-operated Ca2+ entry in the aorta of two-kidney, one-clip hypertensive rats[J]. Exp Physiol, 2019, 104(6):932-945. DOI: 10.1113/EP086924. [33] Li L, Wang C, Gu Y. Collagen IV, a promising serum biomarker for evaluating the prognosis of revascularization in a 2-kidney, 1-clip hypertensive rat model[J]. Interact Cardiovasc Thorac Surg, 2020, 30(3):483-490. DOI: 10.1093/icvts/ivz275. [34] Shi W, Wang Y, Peng J, et al. EPHB6 controls catecholamine biosynthesis by up-regulating tyrosine hydroxylase transcription in adrenal gland chromaffin cells[J]. J Biol Chem, 2019, 294(17):6871-6887. DOI: 10.1074/jbc.RA118.005767. [35] Arnold AC, Gallagher PE, Diz DI. Brain renin-angiotensin system in the nexus of hypertension and aging[J]. Hypertens Res, 2013, 36(1):5-13. DOI: 10.1038/hr.2012.161. [36] Su C, Xue J, Ye C, et al. Role of the central renin‑angiotensin system in hypertension (Review) [J]. Int J Mol Med, 2021, 47(6):95. DOI: 10.3892/ijmm.2021.4928. [37] Mulatero P, Monticone S, Deinum J, et al. Genetics, prevalence, screening and confirmation of primary aldosteronism: a position statement and consensus of the Working Group on Endocrine Hypertension of The European Society of Hypertension[J]. J Hypertens, 2020, 38(10):1919-1928. DOI: 10.1097/HJH.0000000000002510. [38] Gates P. Arteriosclerosis with superimposed atherosclerosis is the cause not the consequence of essential hypertension[J]. Med Hypotheses, 2020, 144:110236. DOI: 10.1016/j.mehy.2020.110236. [39] Hu Q, Zhang H, Gutiérrez Cortés N, et al. Increased drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction[J]. Circ Res, 2020, 126(4):456-470. DOI: 10.1161/CIRCRESAHA.119.315252. [40] Savini S, Ciorba A, Bianchini C, et al. Assessment of obstructive sleep apnoea (OSA) in children: an update[J]. Acta Otorhinolaryngol Ital, 2019, 39(5):289-297. DOI: 10.14639/0392-100X-N0262. [41] Wang Y, Li CX, Lin YN, et al. The role of aldosterone in OSA and OSA-related hypertension[J]. Front Endocrinol (Lausanne), 2022, 12:801689. DOI: 10.3389/fendo.2021.801689. [42] Janovic N, Janovic A, Milicic B, et al. Relationship between nasal septum morphology and nasal obstruction symptom severity: computed tomography study[J]. Braz J Otorhinolaryngol, 2022, 88(5):663-668. DOI: 10.1016/j.bjorl.2020.09.004. [43] Cai Y, Goldberg AN, Chang JL. The nose and nasal breathing in sleep apnea[J]. Otolaryngol Clin North Am, 2020, 53(3):385-395. DOI: 10.1016/j.otc.2020.02.002. [44] Roep BO, Thomaidou S, van Tienhoven R, et al. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?) [J]. Nat Rev Endocrinol, 2021, 17(3):150-161. DOI: 10.1038/s41574-020-00443-4. [45] Gu Y, Lian X, Sun W, et al. Diabetes Mellitus induces alterations in metallothionein protein expression and metal levels in the testis and liver[J]. J Int Med Res, 2018, 46(1):185-194. DOI: 10.1177/0300060517708923. [46] Wang AN, Carlos J, Fraser GM, et al. Zucker Diabetic-Sprague Dawley (ZDSD) rat: type 2 diabetes translational research model[J]. Exp Physiol, 2022, 107(4):265-282. DOI: 10.1113/EP089947. [47] 万斌,孙丽薇,张巧香,等.2型糖尿病合并肾性高血压模型的建立及评价[J].动物医学进展,2016,37(5):53-59. DOI:10.3969/j.issn.1007-5038.2016.05.011. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||