International Medicine and Health Guidance News ›› 2025, Vol. 31 ›› Issue (12): 1968-1971.DOI: 10.3760/cma.j.cn441417-20240926-12007
• New Medical Advances • Previous Articles Next Articles
Research progress on regulation mechanisms of synaptic plasticity and its relationship with nervous system diseases
Wang Linhua1, Huo Yingqian1, Li Tingting1, Liu Yanmin1, Xi Yalin2, Wang Meiling1
1 Department of Neurology, Binzhou Medical University Hospital, Binzhou 256600, China; 2 Department of Neurology, Suining Central Hospital, Suining 629000, China
Received:
2024-09-26
Online:
2025-06-15
Published:
2025-06-15
Contact:
Wang Meiling, Email: wmc_111@126.com
Supported by:
Plan of Medical and Health Science and Technology Development in Shandong Province (2018WS539)
汪临华1 霍颖倩1 李婷婷1 刘晏民1 席娅琳2 王美玲1
1滨州医学院附属医院神经内科,滨州 256600;2遂宁市中心医院神经内科,遂宁 629000
通讯作者:
王美玲,Email:wmc_111@126.com
基金资助:
山东省医药卫生科技发展计划(2018WS539)
Wang Linhua, Huo Yingqian, Li Tingting, Liu Yanmin, Xi Yalin, Wang Meiling.
Research progress on regulation mechanisms of synaptic plasticity and its relationship with nervous system diseases [J]. International Medicine and Health Guidance News, 2025, 31(12): 1968-1971.
汪临华 霍颖倩 李婷婷 刘晏民 席娅琳 王美玲. 突触可塑性的调节机制及其与神经系统疾病关系的研究进展 [J]. 国际医药卫生导报, 2025, 31(12): 1968-1971.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.cn441417-20240926-12007
[1]Chistiakova M, Bannon NM, Bazhenov M, et al. Heterosynaptic plasticity: multiple mechanisms and multiple roles[J]. Neuroscientist, 2014,20(5):483-498. DOI: 10.1177/1073858414529829. [2]Park JM, Jung SC, Eun SY. Long-term synaptic plasticity: circuit perturbation and stabilization[J]. Korean J Physiol Pharmacol, 2014,18(6):457-460. DOI: 10.4196/kjpp.2014.18.6.457. [3]Honkura N, Matsuzaki M, Noguchi J, et al. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines[J]. Neuron, 2008,57(5):719-729. DOI: 10.1016/j.neuron.2008.01.013. [4]Kapitein LC, Yau KW, Gouveia SM, et al. NMDA receptor activation suppresses microtubule growth and spine entry[J]. J Neurosci, 2011,31(22):8194-8209. DOI: 10.1523/JNEUROSCI.6215-10.2011. [5]Hu X, Ballo L, Pietila L, et al. BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions[J]. J Neurosci, 2011,31(43):15597-15603. DOI: 10.1523/JNEUROSCI.2445-11.2011. [6]Liu YJ, Spangenberg EE, Tang B, et al. Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex[J]. J Neurosci, 2021,41(6):1274-1287. DOI: 10.1523/JNEUROSCI.2140-20.2020. [7]Stevens B, Allen NJ, Vazquez LE, et al. The classical complement cascade mediates CNS synapse elimination[J]. Cell, 2007,131(6):1164-1178. DOI: 10.1016/j.cell.2007.10.036. [8]Vainchtein ID, Chin G, Cho FS, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development[J]. Science, 2018,359(6381):1269-1273. DOI: 10.1126/science.aal3589. [9]Rauti R, Cellot G, D'Andrea P, et al. BDNF impact on synaptic dynamics: extra or intracellular long-term release differently regulates cultured hippocampal synapses[J]. Mol Brain, 2020,13(1):43. DOI: 10.1186/s13041-020-00582-9. [10]Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016,53(2):1181-1194. DOI: 10.1007/s12035-014-9070-5. [11]Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: from synaptic regulation to psychiatric disorders[J]. Cell, 2022,185(1):62-76. DOI: 10.1016/j.cell.2021.12.003. [12]Saw G, Krishna K, Gupta N, et al. Epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway involved in long-term potentiation and synaptic plasticity in rats[J]. Glia, 2020,68(3):656-669. DOI: 10.1002/glia.23748. [13]Cheng Q, Song SH, Augustine GJ. Calcium-dependent and synapsin-dependent pathways for the presynaptic actions of BDNF[J]. Front Cell Neurosci, 2017,11:75. DOI: 10.3389/fncel.2017.00075. [14]Gideons ES, Lin PY, Mahgoub M, et al. Chronic lithium treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic downscaling[J]. Elife, 2017,6:e25480. DOI: 10.7554/eLife.25480. [15]Lalo U, Bogdanov A, Moss GW, et al. Astroglia-derived BDNF and MSK-1 mediate experience- and diet-dependent synaptic plasticity[J]. Brain Sci, 2020,10(7):462. DOI: 10.3390/brainsci10070462. [16]Horvath PM, Chanaday NL, Alten B, et al. A subthreshold synaptic mechanism regulating BDNF expression and resting synaptic strength[J].Cell Rep, 2021, 36(5):109467.DOI:10.1016/j.celrep.2021.109467. [17]Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions[J]. Pharmacol Res, 2016,111:1-16. DOI: 10.1016/j.phrs.2016.05.010. [18]Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain[J]. J Neural Transm (Vienna), 2014,121(8):799-817. DOI: 10.1007/s00702-014-1180-8. [19]Larsen RS, Rao D, Manis PB, et al. STDP in the developing sensory neocortex[J]. Front Synaptic Neurosci, 2010,2:9. DOI: 10.3389/fnsyn.2010.00009. [20]Czarnecki A, Birtoli B, Ulrich D. Cellular mechanisms of burst firing-mediated long-term depression in rat neocortical pyramidal cells[J]. J Physiol, 2007,578(Pt 2):471-479. DOI: 10.1113/jphysiol.2006.123588. [21]Larsen RS, Sjöström PJ. Synapse-type-specific plasticity in local circuits[J]. Curr Opin Neurobiol, 2015,35:127-135. DOI: 10.1016/j.conb.2015.08.001. [22]Davies DA, Adlimoghaddam A, Albensi BC. Role of Nrf2 in synaptic plasticity and memory in Alzheimer's disease[J]. Cells, 2021,10(8):1884. DOI: 10.3390/cells10081884. [23]Le Douce J, Maugard M, Veran J, et al. Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in Alzheimer's disease[J]. Cell Metab, 2020,31(3):503-517.e8. DOI: 10.1016/j.cmet.2020.02.004. [24]Wang Y, Fu WY, Cheung K, et al. Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus[J]. Proc Natl Acad Sci U S A, 2021,118(1):e2020810118. DOI: 10.1073/pnas.2020810118. [25]Thiele SL, Chen B, Lo C, et al. Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models[J]. Neurobiol Dis, 2014,71:334-344. DOI: 10.1016/j.nbd.2014.08.006. [26]University of California, San Francisco MS-EPIC Team. Long-term evolution of multiple sclerosis disability in the treatment era[J]. Ann Neurol, 2016,80(4):499-510. DOI: 10.1002/ana.24747. [27]Di Filippo M, Mancini A, Bellingacci L, et al. Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis[J]. Cell Rep, 2021,37(10):110094. DOI: 10.1016/j.celrep.2021.110094. [28]Lassmann H, van Horssen J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions[J]. Biochim Biophys Acta, 2016,1862(3):506-510. DOI: 10.1016/j.bbadis.2015.09.018. [29]Palma FR, He C, Danes JM, et al. Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch[J]. Antioxid Redox Signal, 2020,32(10):701-714. DOI: 10.1089/ars.2019.7962. [30]de Curtis M, Garbelli R, Uva L. A hypothesis for the role of axon demyelination in seizure generation[J]. Epilepsia, 2021,62(3):583-595. DOI: 10.1111/epi.16824. [31]Wang P, Ma K, Yang L, et al. Predicting signaling pathways regulating demyelination in a rat model of lithium-pilocarpine-induced acute epilepsy: a proteomics study[J]. Int J Biol Macromol, 2021,193(Pt B):1457-1470. DOI: 10.1016/j.ijbiomac.2021.10.209. [32]Vinet J, Vainchtein ID, Spano C, et al. Microglia are less pro-inflammatory than myeloid infiltrates in the hippocampus of mice exposed to status epilepticus[J]. Glia, 2016,64(8):1350-1362. DOI: 10.1002/glia.23008. [33]Cho K. Emerging roles of complement protein C1q in neurodegeneration[J]. Aging Dis, 2019,10(3):652-663. DOI: 10.14336/AD.2019.0118. [34]Sellgren CM, Gracias J, Watmuff B, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning[J]. Nat Neurosci, 2019,22(3):374-385. DOI: 10.1038/s41593-018-0334-7. [35]Lepeta K, Kaczmarek L. Matrix metalloproteinase-9 as a novel player in synaptic plasticity and schizophrenia[J]. Schizophr Bull, 2015,41(5):1003-1009. DOI: 10.1093/schbul/sbv036. [36]Bartsch JC, Schott BH, Behr J. Hippocampal dysfunction in schizophrenia and aberrant hippocampal synaptic plasticity in rodent model psychosis: a selective review[J]. Pharmacopsychiatry, 2023,56(2):57-63. DOI: 10.1055/a-0960-9846. [37]Mould AW, Hall NA, Milosevic I, et al. Targeting synaptic plasticity in schizophrenia: insights from genomic studies[J]. Trends Mol Med, 2021,27(11):1022-1032. DOI: 10.1016/j.molmed.2021.07.014. |
[1] |
Zhang Guibin, Deng Yajun, Chen Xinqing, Cao Meng, Xu Yan.
Evaluation of the effect of percutaneous corner vertebroplasty in the treatment of osteoporotic vertebral compression fractures [J]. International Medicine and Health Guidance News, 2025, 31(9): 1410-1415. |
[2] |
Zhang Bo, Zhang Bin.
Efficacy of modified PVP in the treatment of senile patients with mid-thoracic OVCF complicated with degenerative spinal disease [J]. International Medicine and Health Guidance News, 2025, 31(9): 1415-1420. |
[3] |
Yang Yuetai, Jia Benzhi.
Correlation analysis between bone cement/vertebral body volume ratio and adjacent vertebral compression fractures after percutaneous vertebroplasty [J]. International Medicine and Health Guidance News, 2025, 31(9): 1421-1425. |
[4] |
Chen Xiaoyan, Zhou Guojun, Shi Kui, Li Ziqiang, Sun Feifei.
Risk factors analysis of recurrent fracture in elderly patients with osteoporotic thoracolumbar compression fracture after PVP [J]. International Medicine and Health Guidance News, 2025, 31(9): 1426-1429. |
[5] |
Ren Fei, Zhang Haiping, Gao Shansong.
Construction and validation of a risk model for adjacent segment disease after lumbar fusion surgery based on preoperative spinal - pelvic parameters and intervertebral disc characteristics [J]. International Medicine and Health Guidance News, 2025, 31(9): 1430-1435. |
[6] |
Yang Li, Jin Xingshan.
Clinical effect of Qidong Yixin Granules combined with core muscle group training on patients with spinal cord injury [J]. International Medicine and Health Guidance News, 2025, 31(9): 1435-1439. |
[7] |
Ma Hang, Zhang Bing.
Levels of serum S100A12 and peripheral blood RDW and Mono% and their clinical significance in patients with spinal tuberculosis and their clinical significance [J]. International Medicine and Health Guidance News, 2025, 31(9): 1440-1444. |
[8] |
Liu Qing, Ren Wenjuan, Zhong Hongping.
Influencing factors of intravenous immunoglobulin resistance and coronary artery damage in children with Kawasaki disease [J]. International Medicine and Health Guidance News, 2025, 31(9): 1451-1456. |
[9] |
Jiang Hong, Xue Dongqing.
Effect of infliximab combined with tacrolimus on children with Kawasaki disease resistant to initial immunoglobulin therapy and its impact on immune function [J]. International Medicine and Health Guidance News, 2025, 31(9): 1456-1460. |
[10] |
Zhi Danlin, Huo Chaokui Lu, Jianmei, Xia Ruiqing, Cheng Hao, Cao Danmin.
Advances in intraocular lens refractive power calculation for cataract surgery following radial keratotomy [J]. International Medicine and Health Guidance News, 2025, 31(9): 1461-1465. |
[11] |
Zhao Zhou, Liu Weipeng, Li Zongrui, Wang Ruizhi, Hu Baoguang.
Research status of hypertensive rat model [J]. International Medicine and Health Guidance News, 2025, 31(9): 1465-1470. |
[12] |
Zan Xingchun.
Research progress and prospects of Tongdu Tiaoshen acupuncture in the treatment of post-stroke dysphagia [J]. International Medicine and Health Guidance News, 2025, 31(9): 1470-1474. |
[13] |
Sang Yang, Han Xinpeng, Yan Yuling, Zhang Shaoyi.
Study on the mechanism of CD147 in regulating airway remodeling in asthma rats based on Akt-FoxO3-NF-κB signaling axis [J]. International Medicine and Health Guidance News, 2025, 31(9): 1482-1488. |
[14] |
Wu Yali, Fu Xiaoping, Ding Dawei, Xu Ning'an, Zhou Yuanyuan.
Risk factors related to children attention deficit hyperactivity disorder and construction of prediction model [J]. International Medicine and Health Guidance News, 2025, 31(9): 1489-1494. |
[15] |
Wang Qingyuan, Fang Yuanlong, Wang Zhiqin, Huang Rong, Tian Song, Yuan Like, Ge Wuping, Zhu Xiaochun, Xiao Shangjie, Zhou Jialiang.
Analysis of diagnosis and treatment of secondary intestinal stenosis after conservative treatment of neonatal necrotizing enterocolitis [J]. International Medicine and Health Guidance News, 2025, 31(9): 1495-1498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||