[1] Heusch G. Cardioprotection: chances and challenges of its translation to the clinic[J]. Lancet, 2013, 381(9861):166-175. DOI: 10.1016/S0140-6736(12)60916-7.
[2] 龚志坚,温明华,程晓曙.外泌体与心肌缺血再灌注损伤的研究进展[J].中华心血管病杂志,2017,45(12):1112-1114. DOI:10.3760/cma.j.issn.0253-3758.2017.12.021.
[3] Melo SA, Sugimoto H, O'Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis[J]. Cancer Cell, 2014, 26(5):707-721. DOI: 10.1016/j.ccell.2014.09.005.
[4] Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19):9412-9420.
[5] 李胜,李澜,郭蕊,等.外泌体改善心肌缺血再灌注损伤的作用机制研究进展[J].中西医结合心脑血管病杂志,2021,19(1):69-72. DOI:10.12102/j.issn.1672-1349. 2021. 01.015.
[6] Gupta S, Knowlton AA. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway[J]. Am J Physiol Heart Circ Physiol, 2007, 292(6):H3052-H3056. DOI: 10.1152/ajpheart.01355.2006.
[7] Li G, Labruto F, Sirsjö A, et al. Myocardial protection by remote preconditioning: the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase[J]. Eur J Cardiothorac Surg, 2004, 26(5):968-973. DOI: 10.1016/j.ejcts.2004.06.015.
[8] Maxwell SR, Lip GY. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options[J]. Int J Cardiol, 1997, 58(2):95-117. DOI: 10.1016/s0167-5273(96)02854-9.
[9] Reffelmann T, Kloner RA. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion[J]. Basic Res Cardiol, 2006, 101(5):359-372. DOI: 10.1007/s00395-006-0615-2.
[10] Guarnieri C, Flamigni F, Caldarera CM. Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart[J]. J Mol Cell Cardiol, 1980, 12(8):797-808. DOI: 10.1016/0022-2828(80)90081-4.
[11] Ambrosio G, Becker LC, Hutchins GM, et al. Reduction in experimental infarct size by recombinant human superoxide dismutase: insights into the pathophysiology of reperfusion injury[J]. Circulation, 1986, 74(6):1424-1433. DOI: 10.1161/01.cir.74.6.1424.
[12] Przyklenk K, Kloner RA. "Reperfusion injury" by oxygen-derived free radicals? Effect of superoxide dismutase plus catalase, given at the time of reperfusion, on myocardial infarct size, contractile function, coronary microvasculature, and regional myocardial blood flow[J]. Circ Res, 1989, 64(1):86-96. DOI: 10.1161/01.res.64.1.86.
[13] Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword?[J]. J Clin Invest, 1985, 76(5):1713-1719. DOI: 10.1172/JCI112160.
[14] Entman ML, Smith CW. Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease[J]. Cardiovasc Res, 1994, 28(9):1301-1311. DOI: 10.1093/cvr/28.9.1301.
[15] Wang RP, Yao Q, Xiao YB, et al. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in myocardial injury in a rat chronic stress model[J]. Stress, 2011, 14(5):567-575. DOI: 10.3109/10253890.2011.571729.
[16] Ao L, Zou N, Cleveland JC, et al. Myocardial TLR4 is a determinant of neutrophil infiltration after global myocardial ischemia: mediating KC and MCP-1 expression induced by extracellular HSC70[J]. Am J Physiol Heart Circ Physiol, 2009, 297(1):H21-H28. DOI: 10.1152/ajpheart.00292.2009.
[17] Dong J, Xu M, Zhang W, et al. Effects of sevoflurane pretreatment on myocardial ischemia-reperfusion injury through the Akt/hypoxia-inducible factor 1-alpha (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway[J]. Med Sci Monit, 2019, 25:3100-3107. DOI: 10.12659/MSM.914265.
[18] Frank A, Bonney M, Bonney S, et al. Myocardial ischemia reperfusion injury: from basic science to clinical bedside[J]. Semin Cardiothorac Vasc Anesth, 2012, 16(3):123-132. DOI: 10.1177/1089253211436350.
[19] Wang Y, Zhao R, Liu D, et al. Exosomes derived from miR-214-enriched bone marrow-derived mesenchymal stem cells regulate oxidative damage in cardiac stem cells by targeting CaMKII[J]. Oxid Med Cell Longev, 2018, 2018:4971261. DOI: 10.1155/2018/4971261.
[20] Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J]. Cardiovasc Res, 2019, 115(7):1205-1216. DOI: 10.1093/cvr/cvz040.
[21] Agarwal U, George A, Bhutani S, et al. Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients[J]. Circ Res, 2017, 120(4):701-712. DOI: 10.1161/CIRCRESAHA.116.309935.
[22] Chen Q, Liu Y, Ding X, et al. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7[J]. Mol Cell Biochem, 2020, 465(1-2):103-114. DOI: 10.1007/s11010-019-03671-z.
[23] Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2013, 10(3):301-312. DOI: 10.1016/j.scr.2013.01.002.
[24] 陈琮.心肌细胞外泌体对心脏的主要作用及潜在机制分析[J].医药前沿,2020,10(18):72-73.
[25] Liu L, Jin X, Hu CF, et al. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways[J]. Cell Physiol Biochem, 2017, 43(1):52-68. DOI: 10.1159/000480317.
[26] 常冀杨,孟晓菲,周佳奇,等.缺血再灌注损伤下微囊泡抑制心肌细胞凋亡的研究进展[J].国际医药卫生导报,2021,27(10):1571-1575. DOI:10.3760/cma.j.issn.1007-1245. 2021.10.041.
[27] Chen Q, Huang M, Wu J, et al. Exosomes isolated from the plasma of remote ischemic conditioning rats improved cardiac function and angiogenesis after myocardial infarction through targeting Hsp70[J]. Aging (Albany NY), 2020, 12(4):3682-3693. DOI: 10.18632/aging.102837.
[28] Ma T, Chen Y, Chen Y, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction[J]. Stem Cells Int, 2018, 2018:3290372. DOI: 10.1155/2018/3290372.
[29] Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection[J]. Int J Cardiol, 2015, 182:349-360. DOI: 10.1016/j.ijcard.2014.12.043.
|