International Medicine and Health Guidance News ›› 2025, Vol. 31 ›› Issue (12): 1979-1983.DOI: 10.3760/cma.j.cn441417-20250216-12010
• New Medical Advances • Previous Articles Next Articles
Research progress on application of artificial intelligence in clinical diagnosis and prognosis of patients with hepatocellular carcinoma
Zhu Peng1, Qin Gang1, Guo Shimin2
1 Department of Gastroenterology, Suining First People's Hospital, Suining 629000, China; 2 Department of Infectious Diseases, 989th Hospital of Joint Logistic Support Force, Luoyang 471000, China
Received:
2025-02-16
Online:
2025-06-15
Published:
2025-06-15
Contact:
Guo Shimin, Email: 190880818@qq.com
Supported by:
Artificial Liver Special Fund of Liver and Gallstone Charity Foundation (iGandanF-1082024-RGG081)
朱鹏1 覃刚1 郭世民2
1遂宁市第一人民医院消化内科,遂宁 629000;2联勤保障部队第九八九医院感染科,洛阳 471000
通讯作者:
郭世民,Email:190880818@qq.com
基金资助:
肝胆相照公益基金会人工肝专项基金(iGandanF-1082024-RGG081)
Zhu Peng, Qin Gang, Guo Shimin.
Research progress on application of artificial intelligence in clinical diagnosis and prognosis of patients with hepatocellular carcinoma [J]. International Medicine and Health Guidance News, 2025, 31(12): 1979-1983.
朱鹏 覃刚 郭世民. 人工智能用于肝细胞癌临床诊断及预后的研究进展 [J]. 国际医药卫生导报, 2025, 31(12): 1979-1983.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.cn441417-20250216-12010
[1]Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023 [J]. CA Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763. [2]Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma [J]. Nat Rev Dis Primers, 2021, 7(1): 6. DOI: 10.1038/s41572-020-00240-3. [3]Calderaro J, Seraphin TP, Luedde T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma [J]. J Hepatol, 2022, 76(6): 1348-1361. DOI: 10.1016/j.jhep.2022.01.014. [4]Tangsrivimol JA, Darzidehkalani E, Virk HUH, et al. Benefits, limits, and risks of ChatGPT in medicine [J]. Front Artif Intell, 2025, 8: 1518049. DOI: 10.3389/frai.2025.1518049. [5]Conroy G, Mallapaty S. How China created AI model DeepSeek and shocked the world [J]. Nature, 2025, 638(8050): 300-301. DOI: 10.1038/d41586-025-00259-0. [6]Dimopoulos P, Mulita A, Antzoulas A, et al. The role of artificial intelligence and image processing in the diagnosis, treatment, and prognosis of liver cancer: a narrative-review [J]. Prz Gastroenterol, 2024, 19(3): 221-230. DOI: 10.5114/pg.2024.143147. [7]Xiong M, Xu Y, Zhao Y, et al. Quantitative analysis of artificial intelligence on liver cancer: a bibliometric analysis [J]. Front Oncol, 2023, 13: 990306. DOI: 10.3389/fonc.2023.990306. [8]Bakrania A, Joshi N, Zhao X, et al. Artificial intelligence in liver cancers: decoding the impact of machine learning models in clinical diagnosis of primary liver cancers and liver cancer metastases [J]. Pharmacol Res, 2023, 189: 106706. DOI: 10.1016/j.phrs.2023.106706. [9]Kim SS, Lee J, Ahn SB, et al. Clinical course and prognosis of long-term survivors of hepatocellular carcinoma [J]. Aliment Pharmacol Ther, 2025, 61(8): 1333-1342. DOI: 10.1111/apt.70004. [10]Jin T, Luo M, Chen F, et al. Harnessing the power of AI for enhanced diagnosis and treatment of hepatocellular carcinoma [J]. Turk J Gastroenterol, 2024, 36(4): 200-208. DOI: 10.5152/tjg.2024.24325. [11]Yang Y, Bo Z, Wang J, et al. Machine learning based on alcohol drinking-gut microbiota-liver axis in predicting the occurrence of early-stage hepatocellular carcinoma [J]. BMC Cancer, 2024, 24(1): 1468. DOI: 10.1186/s12885-024-13161-1. [12]Shin H, Hur MH, Song BG, et al. AI model using CT-based imaging biomarkers to predict hepatocellular carcinoma in patients with chronic hepatitis B [J]. J Hepatol, 2024: S0168-8278(24)02784-3. DOI: 10.1016/j.jhep.2024.12.029. [13]Salehi MA, Harandi H, Mohammadi S, et al. Diagnostic performance of artificial intelligence in detection of hepatocellular carcinoma: a meta-analysis [J]. J Imaging Inform Med, 2024, 37(4): 1297-1311. DOI: 10.1007/s10278-024-01058-1. [14]Şahin E, Tatar OC, Ulutaş ME, et al. Diagnostic performance of deep learning applications in hepatocellular carcinoma detection using computed tomography imaging [J]. Turk J Gastroenterol, 2024, 36(2): 124-130. DOI: 10.5152/tjg.2024.24538. [15]刘一萍,李新平,陈磊,等.基于人工智能的肝细胞癌精准影像学诊断和复发预测[J].临床肝胆病杂志,2022,38(3):521-527. DOI:10.3969/j.issn.1001-5256.2022.03.006. [16]Lee IC, Tsai YP, Lin YC, et al. A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images [J]. Cancer Imaging, 2024, 24(1): 43. DOI: 10.1186/s40644-024-00686-8. [17]Laohawetwanit T, Apornvirat S, Namboonlue C. Thinking like a pathologist: Morphologic approach to hepatobiliary tumors by ChatGPT [J]. Am J Clin Pathol, 2025, 163(1): 3-11. DOI: 10.1093/ajcp/aqae087. [18]Takamoto T, Mihara Y, Nishioka Y, et al. Surgical treatment for hepatocellular carcinoma in era of multidisciplinary strategies [J]. Int J Clin Oncol, 2025, 30(3): 417-426. DOI: 10.1007/s10147-025-02703-7. [19]Zheng J, Wang S, Xia L, et al. Hepatocellular carcinoma: signaling pathways and therapeutic advances [J]. Signal Transduct Target Ther, 2025, 10(1): 35. DOI: 10.1038/s41392-024-02075-w. [20]Quan B, Li J, Mi H, et al. Development and preliminary validation of a novel convolutional neural network model for predicting treatment response in patients with unresectable hepatocellular carcinoma receiving hepatic arterial infusion chemotherapy [J]. J Imaging Inform Med, 2024, 37(4): 1282-1296. DOI: 10.1007/s10278-024-01003-2. [21]An C, Wei R, Liu W, et al. Machine learning-based decision support model for selecting intra-arterial therapies for unresectable hepatocellular carcinoma: a national real-world evidence-based study [J]. Br J Cancer, 2024, 131(5): 832-842. DOI: 10.1038/s41416-024-02784-7. [22]Eghbali S, Heumann TR. Next-generation immunotherapy for hepatocellular carcinoma: mechanisms of resistance and novel treatment approaches [J]. Cancers (Basel), 2025, 17(2): 236. DOI: 10.3390/cancers17020236. [23]Zeng Q, Klein C, Caruso S, et al. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study [J]. Lancet Oncol, 2023, 24(12): 1411-1422. DOI: 10.1016/S1470-2045(23)00468-0. [24]Nakao Y, Nishihara T, Sasaki R, et al. Investigation of deep learning model for predicting immune checkpoint inhibitor treatment efficacy on contrast-enhanced computed tomography images of hepatocellular carcinoma [J]. Sci Rep, 2024, 14(1): 6576. DOI: 10.1038/s41598-024-57078-y. [25]European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma [J]. J Hepatol, 2025, 82(2): 315-374. DOI: 10.1016/j.jhep.2024.08.028. [26]Romeo M, Dallio M, Napolitano C, et al. Clinical applications of artificial intelligence (AI) in human cancer: is it time to update the diagnostic and predictive models in managing hepatocellular carcinoma (HCC)? [J]. Diagnostics (Basel), 2025, 15(3): 252. DOI: 10.3390/diagnostics15030252. [27]Wang S, Shao M, Fu Y, et al. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis [J]. Sci Rep, 2024, 14(1): 13232. DOI: 10.1038/s41598-024-63531-9. [28]Zhang Y, Shi K, Feng Y, et al. Machine learning model using immune indicators to predict outcomes in early liver cancer [J]. World J Gastroenterol, 2025, 31(5):101722. DOI: 10.3748/wjg.v31.i5.101722. [29]Xia F, Chen Q, Liu Z, et al. Machine learning models for predicting postoperative peritoneal metastasis after hepatocellular carcinoma rupture: a multicenter cohort study in China [J]. Oncologist, 2025, 30(1): oyae341. DOI: 10.1093/oncolo/oyae341. [30]Wu L, Lai Q, Li S, et al. Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: a systematic review and meta-analysis [J]. BMC Med Imaging, 2024, 24(1): 263. DOI: 10.1186/s12880-024-01440-z. |
[1] |
Zhang Guibin, Deng Yajun, Chen Xinqing, Cao Meng, Xu Yan.
Evaluation of the effect of percutaneous corner vertebroplasty in the treatment of osteoporotic vertebral compression fractures [J]. International Medicine and Health Guidance News, 2025, 31(9): 1410-1415. |
[2] |
Zhang Bo, Zhang Bin.
Efficacy of modified PVP in the treatment of senile patients with mid-thoracic OVCF complicated with degenerative spinal disease [J]. International Medicine and Health Guidance News, 2025, 31(9): 1415-1420. |
[3] |
Yang Yuetai, Jia Benzhi.
Correlation analysis between bone cement/vertebral body volume ratio and adjacent vertebral compression fractures after percutaneous vertebroplasty [J]. International Medicine and Health Guidance News, 2025, 31(9): 1421-1425. |
[4] |
Chen Xiaoyan, Zhou Guojun, Shi Kui, Li Ziqiang, Sun Feifei.
Risk factors analysis of recurrent fracture in elderly patients with osteoporotic thoracolumbar compression fracture after PVP [J]. International Medicine and Health Guidance News, 2025, 31(9): 1426-1429. |
[5] |
Ren Fei, Zhang Haiping, Gao Shansong.
Construction and validation of a risk model for adjacent segment disease after lumbar fusion surgery based on preoperative spinal - pelvic parameters and intervertebral disc characteristics [J]. International Medicine and Health Guidance News, 2025, 31(9): 1430-1435. |
[6] |
Yang Li, Jin Xingshan.
Clinical effect of Qidong Yixin Granules combined with core muscle group training on patients with spinal cord injury [J]. International Medicine and Health Guidance News, 2025, 31(9): 1435-1439. |
[7] |
Ma Hang, Zhang Bing.
Levels of serum S100A12 and peripheral blood RDW and Mono% and their clinical significance in patients with spinal tuberculosis and their clinical significance [J]. International Medicine and Health Guidance News, 2025, 31(9): 1440-1444. |
[8] |
Liu Qing, Ren Wenjuan, Zhong Hongping.
Influencing factors of intravenous immunoglobulin resistance and coronary artery damage in children with Kawasaki disease [J]. International Medicine and Health Guidance News, 2025, 31(9): 1451-1456. |
[9] |
Jiang Hong, Xue Dongqing.
Effect of infliximab combined with tacrolimus on children with Kawasaki disease resistant to initial immunoglobulin therapy and its impact on immune function [J]. International Medicine and Health Guidance News, 2025, 31(9): 1456-1460. |
[10] |
Zhi Danlin, Huo Chaokui Lu, Jianmei, Xia Ruiqing, Cheng Hao, Cao Danmin.
Advances in intraocular lens refractive power calculation for cataract surgery following radial keratotomy [J]. International Medicine and Health Guidance News, 2025, 31(9): 1461-1465. |
[11] |
Zhao Zhou, Liu Weipeng, Li Zongrui, Wang Ruizhi, Hu Baoguang.
Research status of hypertensive rat model [J]. International Medicine and Health Guidance News, 2025, 31(9): 1465-1470. |
[12] |
Zan Xingchun.
Research progress and prospects of Tongdu Tiaoshen acupuncture in the treatment of post-stroke dysphagia [J]. International Medicine and Health Guidance News, 2025, 31(9): 1470-1474. |
[13] |
Sang Yang, Han Xinpeng, Yan Yuling, Zhang Shaoyi.
Study on the mechanism of CD147 in regulating airway remodeling in asthma rats based on Akt-FoxO3-NF-κB signaling axis [J]. International Medicine and Health Guidance News, 2025, 31(9): 1482-1488. |
[14] |
Wu Yali, Fu Xiaoping, Ding Dawei, Xu Ning'an, Zhou Yuanyuan.
Risk factors related to children attention deficit hyperactivity disorder and construction of prediction model [J]. International Medicine and Health Guidance News, 2025, 31(9): 1489-1494. |
[15] |
Wang Qingyuan, Fang Yuanlong, Wang Zhiqin, Huang Rong, Tian Song, Yuan Like, Ge Wuping, Zhu Xiaochun, Xiao Shangjie, Zhou Jialiang.
Analysis of diagnosis and treatment of secondary intestinal stenosis after conservative treatment of neonatal necrotizing enterocolitis [J]. International Medicine and Health Guidance News, 2025, 31(9): 1495-1498. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||