[1] Tritos NA, Miller KK. Diagnosis and management of pituitary adenomas: a review[J]. JAMA, 2023, 329(16):1386-1398. DOI: 10.1001/jama.2023.5444.
[2] Chin SO. Epidemiology of functioning pituitary adenomas[J]. Endocrinol Metab (Seoul), 2020, 35(2):237-242. DOI: 10.3803/EnM.2020.35.2.237.
[3] Pernik MN, Montgomery EY, Isa S, et al. The natural history of non-functioning pituitary adenomas: a meta-analysis of conservatively managed tumors[J]. J Clin Neurosci, 2022, 95:134-141. DOI: 10.1016/j.jocn.2021. 12.003.
[4] Yavropoulou MP, Tsoli M, Barkas K, et al. The natural history and treatment of non-functioning pituitary adenomas (non-functioning PitNETs)[J]. Endocr Relat Cancer, 2020, 27(10):R375-R390. DOI: 10.1530/ERC-20- 0136.
[5] 曾白云,梁建峰,余敦星,等.神经导航结合内窥镜在巨大垂体腺瘤手术中的应用[J].国际医药卫生导报,2006,12(13):15-17.
[6] Almeida JP, Tabasinejad R, Kalyvas A, et al. The importance of long term follow up after endoscopic pituitary surgery: durability of results and tumor recurrence[J]. Neurol India, 2020, 68(Supplement):S92-S100. DOI: 10.4103/0028-3886.287675.
[7] Bioletto F, Prencipe N, Berton AM, et al. Radiomic analysis in pituitary tumors: current knowledge and future perspectives[J]. J Clin Med, 2024, 13(2):336. DOI: 10.3390/jcm13020336.
[8] Koong K, Preda V, Jian A, et al. Application of artificial intelligence and radiomics in pituitary neuroendocrine and sellar tumors: a quantitative and qualitative synthesis[J]. Neuroradiology, 2022, 64(4):647-668. DOI: 10.1007/s00234-021-02845-1.
[9] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446. DOI: 10.1016/j.ejca.2011.11.036.
[10] 吴雪婷,陈晓仪,吴怡雯,等.超声影像组学在乳腺癌中应用的研究进展[J].国际医药卫生导报,2022,28(4):484-487.DOI:10.3760/cma.j.issn.1007-1245.2022.04.010.
[11] 梁芳蓉,杨蕊梦.MRI影像组学在胶质瘤术前分级预测中的研究进展[J].广州医药,2024,55(3):221-230.DOI:10.3969/j.issn.1000-8535.2024.03.002.
[12] van Timmeren JE, Cester D, Tanadini-Lang S, et al. Radiomics in medical imaging-"how-to" guide and critical reflection[J]. Insights Imaging, 2020, 11(1):91. DOI: 10.1186/s13244-020-00887-2.
[13] Avery E, Sanelli PC, Aboian M, et al. Radiomics: a primer on processing workflow and analysis[J]. Semin Ultrasound CT MR, 2022, 43(2):142-146. DOI: 10.1053/j.sult.2022.02.003.
[14] Shur JD, Doran SJ, Kumar S, et al. Radiomics in oncology: a practical guide[J]. Radiographics, 2021, 41(6):1717-1732. DOI: 10.1148/rg.2021210037.
[15] Zhang Y, Ko CC, Chen JH, et al. Radiomics approach for prediction of recurrence in non-functioning pituitary macroadenomas[J]. Front Oncol, 2020, 10:590083. DOI: 10.3389/fonc.2020.590083.
[16] Machado LF, Elias PCL, Moreira AC, et al. MRI radiomics for the prediction of recurrence in patients with clinically non-functioning pituitary macroadenomas[J]. Comput Biol Med, 2020, 124:103966. DOI: 10.1016/j.compbiomed.2020.103966.
[17] Shen C, Liu X, Jin J, et al. A novel magnetic resonance imaging-based radiomics and clinical predictive model for the regrowth of postoperative residual tumor in non-functioning pituitary neuroendocrine tumor[J]. Medicina (Kaunas), 2023, 59(9):1525. DOI: 10.3390/medicina59091525.
[18] 杨洪安,张景润,王家兴,等.基于MRI的放射组学评分和临床病理影像参数预测垂体瘤复发的Nomogram模型研究[J].放射学实践,2023,38(7):853-862.DOI:10.13609/j.cnki.1000-0313.2023.07.008.
[19] Lopes MBS. The 2017 World Health Organization classification of tumors of the pituitary gland: a summary[J]. Acta Neuropathol, 2017, 134(4):521-535. DOI: 10.1007/s00401-017-1769-8.
[20] Zhang C, Heng X, Neng W, et al. Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning[J]. Chin Neurosurg J, 2022, 8(1):21. DOI: 10.1186/s41016-022-00290-4.
[21] Ugga L, Cuocolo R, Solari D, et al. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning[J]. Neuroradiology, 2019, 61(12):1365-1373. DOI: 10.1007/s00234-019-02266-1.
[22] Li H, Liu Z, Li F, et al. Preoperatively predicting Ki67 expression in pituitary adenomas using deep segmentation network and radiomics analysis based on multiparameter MRI[J]. Acad Radiol, 2024, 31(2):617-627. DOI: 10.1016/j.acra.2023.05.023.
[23] 赵继平.影像组学结合临床在预测无功能性垂体大腺瘤Ki-67高增殖指数及术后复发中的价值研究[D].沈阳:中国医科大学,2023.DOI:10.27652/d.cnki.gzyku.2023.001993.
[24] Mohyeldin A, Katznelson LJ, Hoffman AR, et al. Prospective intraoperative and histologic evaluation of cavernous sinus medial wall invasion by pituitary adenomas and its implications for acromegaly remission outcomes[J]. Sci Rep, 2022, 12(1):9919. DOI: 10.1038/s41598-022-12980-1.
[25] Niu J, Zhang S, Ma S, et al. Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images[J]. Eur Radiol, 2019, 29(3):1625-1634. DOI: 10.1007/s00330-018-5725-3.
[26] Cohen-Cohen S, Helal A, Yin Z, et al. Predicting pituitary adenoma consistency with preoperative magnetic resonance elastography[J]. J Neurosurg, 2021, 136(5):1356-1363. DOI: 10.3171/2021.6.JNS204425.
[27] Acitores Cancela A, Rodríguez Berrocal V, Pian Arias H, et al. Effect of pituitary adenoma consistency on surgical outcomes in patients undergoing endonasal endoscopic transsphenoidal surgery[J]. Endocrine, 2022, 78(3):559-569. DOI: 10.1007/s12020-022-03161-1.
[28] Zeynalova A, Kocak B, Durmaz ES, et al. Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI[J]. Neuroradiology, 2019, 61(7):767-774. DOI: 10.1007/s00234-019-02211-2.
[29] Cuocolo R, Ugga L, Solari D, et al. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI[J]. Neuroradiology, 2020, 62(12):1649-1656. DOI: 10.1007/s00234-020- 02502-z.
[30] Mendi BAR, Batur H, Çay N, et al. Radiomic analysis of preoperative magnetic resonance imaging for the prediction of pituitary adenoma consistency[J]. Acta Radiol, 2023, 64(8):2470-2478. DOI: 10.1177/02841851231174462.
[31] Wan T, Wu C, Meng M, et al. Radiomic features on multiparametric MRI for preoperative evaluation of pituitary macroadenomas consistency: preliminary findings[J]. J Magn Reson Imaging, 2022, 55(5):1491-1503. DOI: 10.1002/jmri.27930.
[32] Fan Y, Hua M, Mou A, et al. Preoperative noninvasive radiomics approach predicts tumor consistency in patients with acromegaly: development and multicenter prospective validation[J]. Front Endocrinol (Lausanne), 2019, 10:403. DOI: 10.3389/fendo.2019.00403.
|