国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (4): 562-567.DOI: 10.3760/cma.j.cn441417-20240902-04008
间充质干细胞在神经退行性疾病中的研究进展
王兴兴 张肖林 王延飞
滨州医学院附属医院耳鼻咽喉头颈外科,滨州 256603
收稿日期:
2024-09-02
出版日期:
2025-02-15
发布日期:
2025-02-24
通讯作者:
王延飞,Email:entwyf@163.com
基金资助:
山东省自然科学基金(ZR2023MH372);滨州医学院“临床+X”项目(BY2021LCX25)
Research progress of mesenchymal stem cells in neurodegenerative diseases
Wang Xingxing, Zhang Xiaolin, Wang Yanfei
Department of Otorhinolaryngology, Head, and Neck Surgery, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2024-09-02
Online:
2025-02-15
Published:
2025-02-24
Contact:
Wang Yanfei, Email: entwyf@163.com
Supported by:
Natural Science Foundation in Shandong Province (ZR2023MH372); "Clinical +X" Project of Binzhou Medical University (BY2021LCX25)
摘要:
干细胞参与组织发育、生长、修复及再生治疗,是人体中组织器官再生的基石,具有自我更新和多向分化潜能。间充质干细胞是干细胞的一种,广泛存在于人体脐带中,也是临床中最常用到干细胞之一。神经退行性疾病是一类随着年龄增长而发生慢性、进行性的神经元死亡和功能丧失疾病,包括阿尔茨海默病、帕金森病、肌萎缩侧索硬化症、年龄相关性听力损失等,严重影响老年人的生活质量。随着全球老龄化趋势的加剧,神经退行性疾病发病率逐年上升,成为全球公共卫生领域面临的重大挑战。本文通过PubMed、OVID、中国知网、万方等数据库进行文献检索,总结归纳间充质干细胞在神经退行性疾病中的相关研究。
王兴兴 张肖林 王延飞.
间充质干细胞在神经退行性疾病中的研究进展 [J]. 国际医药卫生导报, 2025, 31(4): 562-567.
Wang Xingxing, Zhang Xiaolin, Wang Yanfei.
Research progress of mesenchymal stem cells in neurodegenerative diseases [J]. International Medicine and Health Guidance News, 2025, 31(4): 562-567.
[1] Rahimi A, Sameei P, Mousavi S, et al. Application of CRISPR/cas9 system in the treatment of alzheimer's disease and neurodegenerative diseases[J].Mol Neurobiol,2024,61(11):9416-9431.DOI:10.1007/s12035-024- 04143-2. [2] Reyhani S, Abbaspanah B, Mousavi SH. Umbilical cord-derived mesenchymal stem cells in neurodegenerative disorders: from literature to clinical practice[J].Regen Med,2020,15(4):1561-1578.DOI:10.2217/rme-2019-0119. [3] Shariati A, Nemati R, Sadeghipour Y, et al. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: a promising frontier[J].Eur J Cell Biol,2020,99(6):151097.DOI:10.1016/j.ejcb.2020.151097. [4] Palanisamy CP, Pei J, Alugoju P, et al. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs)[J].Theranostics,2023,13(12):4138-4165.DOI:10.7150/thno.83066. [5] Sadatpoor SO, Salehi Z, Rahban D, et al. Manipulated mesenchymal stem cells applications in neurodegenerative diseases[J].Int J Stem Cells,2020,13(1):24-45.DOI:10.15283/ijsc19031. [6] Paliwal S, Chaudhuri R, Agrawal A, et al. Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities[J].Stem Cell Res Ther,2018,9(1):298.DOI:10.1186/s13287-018-1012-0. [7] Chen Y, Shen H, Ding Y, et al. The application of umbilical cord-derived MSCs in cardiovascular diseases[J].J Cell Mol Med,2021,25(17):8103-8114.DOI:10.1111/jcmm.16830. [8] Yang Y, Ye G, Zhang YL, et al. Transfer of mitochondria from mesenchymal stem cells derived from induced pluripotent stem cells attenuates hypoxia-ischemia-induced mitochondrial dysfunction in PC12 cells[J].Neural Regen Res,2020,15(3):464-472.DOI:10.4103/1673-5374.266058. [9] Chen W, Zhuo Y, Duan D, et al. Effects of hypoxia on differentiation of mesenchymal stem cells[J].Curr Stem Cell Res Ther,2020,15(4):332-339.DOI:10.2174/1574888X14666190823144928. [10] Heneghan A, Deng F, Wells K, et al. Modifiable lifestyle activities affect cognition in cognitively healthy middle-aged individuals at risk for late-life alzheimer's disease[J].J Alzheimers Dis,2023,91(2):833-846.DOI:10.3233/JAD-220267. [11] 陶晶,杨晓帆,赵志轩,等.针刺疗法对AD大鼠的治疗作用及其机制的实验研究[J].国际医药卫生导报,2023,29(3):342-347.DOI:10.3760/cma.j.issn.1007-1245.2023.03.010. [12] Si ZZ, Zou CJ, Mei X, et al. Targeting neuroinflammation in alzheimer's disease: from mechanisms to clinical applications[J].Neural Regen Res,2023,18(4):708-715.DOI:10.4103/1673-5374.353484. [13] Katolikova NV, Malashicheva AB, Gainetdinov RR. Cell replacement therapy in parkinson's disease-history of development and prospects for Use in clinical practice[J].Mol Biol (Mosk),2020,54(6):939-954.DOI:10.31857/S0026898420060063. [14] Tarakad A, Jankovic J. Recent advances in understanding and treatment of parkinson's disease[J].Fac Rev,2020,9:6.DOI:10.12703/b/9-6. [15] Kim G, Gautier O, Tassoni-Tsuchida E, et al. ALS genetics: gains, losses, and implications for future therapies[J].Neuron,2020,108(5):822-842.DOI:10.1016/j.neuron.2020.08.022. [16] Mead RJ, Shan N, Reiser HJ, et al. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation[J].Nat Rev Drug Discov,2023,22(3):185-212.DOI:10.1038/s41573-022-00612-2. [17] Li L, Liu J, She H. Targeting macrophage for the treatment of amyotrophic lateral sclerosis[J].CNS Neurol Disord Drug Targets,2019,18(5):366-371.DOI:10.2174/1871527318666190409103831. [18] 黄治物,吴皓.年龄相关性听力损失研究进展与临床干预策略[J].上海交通大学学报(医学版),2022,42(9):1182-1187.DOI:10.3969/j.issn.1674-8115.2022.09.004. [19] Loughrey DG, Kelly ME, Kelley GA, et al. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: a systematic review and meta-analysis[J].JAMA Otolaryngol Head Neck Surg,2018,144(2):115-126.DOI:10.1001/jamaoto.2017.2513. [20] Razavi S, Razavi MR, Zarkesh Esfahani H, et al. Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells[J].Dev Growth Differ,2013,55(6):648-655.DOI:10.1111/dgd.12072. [21] Ren J, Liu Y, Yao Y, et al. Intranasal delivery of MSC-derived exosomes attenuates allergic asthma via expanding IL-10 producing lung interstitial macrophages in mice[J].Int Immunopharmacol,2021,91:107288.DOI:10.1016/j.intimp.2020.107288. [22] Boukelmoune N, Laumet G, Tang Y, et al. Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice[J].Brain Behav Immun,2021,93:43-54.DOI:10.1016/j.bbi.2020.12.011. [23] Ge Y, Wu J, Zhang L, et al. A new strategy for the regulation of neuroinflammation: exosomes derived from mesenchymal stem cells[J].Cell Mol Neurobiol,2024,44(1):24.DOI:10.1007/s10571-024-01460-x. [24] Kubota K, Nakano M, Kobayashi E, et al. An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells[J].PLoS One,2018,13(9):e0204252.DOI:10.1371/journal.pone.0204252. [25] Zhu J, Yang J, Xu J. miR-223 inhibits the polarization and recruitment of macrophages via NLRP3/IL-1β pathway to meliorate neuropathic pain[J].Pain Res Manag,2021,2021:6674028.DOI:10.1155/2021/6674028. [26] Oveili E, Vafaei S, Bazavar H, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases[J].Cell Commun Signal,2023,21(1):20.DOI:10.1186/s12964-022-01017-9. [27] Han D, Zheng X, Wang X, et al. Mesenchymal stem/stromal cell-mediated mitochondrial transfer and the therapeutic potential in treatment of neurological diseases[J].Stem Cells Int,2020,2020:8838046.DOI:10.1155/2020/8838046. [28] Lane CA, Hardy J, Schott JM. Alzheimer's disease[J].Eur J Neurol,2018,25(1):59-70.DOI:10.1111/ene.13439. [29] 李文玉,金日龙,胡兴越.PKH26标记的骨髓间质干细胞在阿尔茨海默病大鼠中的迁移[J].浙江大学学报(医学版),2012,41(6):659-664.DOI:10.3785/j.issn.1008-9292. 2012.06.009. [30] Kim HJ, Cho KR, Jang H, et al. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with alzheimer's disease dementia: a phase I clinical trial[J].Alzheimers Res Ther,2021,13(1):154.DOI:10.1186/s13195-021-00897-2. [31] Shi JX, Zhang KZ. Advancements in autologous stem cell transplantation for parkinson's disease[J].Curr Stem Cell Res Ther,2024,19(10):1321-1327.DOI:10.2174/1574888X19666230907112413. [32] Rodríguez-Pallares J, García-Garrote M, Parga JA, et al. Combined cell-based therapy strategies for the treatment of parkinson's disease: focus on mesenchymal stromal cells[J].Neural Regen Res,2023,18(3):478-484.DOI:10.4103/1673-5374.350193. [33] Abrishamdar M, Jalali MS, Yazdanfar N. The role of exosomes in pathogenesis and the therapeutic efficacy of mesenchymal stem cell-derived exosomes against parkinson's disease[J].Neurol Sci,2023,44(7):2277-2289.DOI:10.1007/s10072-023-06706-y. [34] Unnisa A, Dua K, Kamal MA. Mechanism of mesenchymal stem cells as a multitarget disease- modifying therapy for parkinson's disease[J].Curr Neuropharmacol,2023,21(4):988-1000.DOI:10.2174/1570159X20666220327212414. [35] Abrishamdar M, Jalali MS, Yazdanfar N. The role of exosomes in pathogenesis and the therapeutic efficacy of mesenchymal stem cell-derived exosomes against parkinson's disease[J].Neurol Sci,2023,44(7):2277-2289.DOI:10.1007/s10072-023-06706-y. [36] Van den Bos J, Ouaamari YE, Wouters K, et al. Are cell-based therapies safe and effective in the treatment of neurodegenerative diseases? A systematic review with meta-analysis[J].Biomolecules,2022,12(2):340.DOI:10.3390/biom12020340. [37] Wang J, Hu W, Feng Z, et al. BDNF-overexpressing human umbilical cord mesenchymal stem cell-derived motor neurons improve motor function and prolong survival in amyotrophic lateral sclerosis mice[J].Neurol Res,2021,43(3):199-209.DOI:10.1080/01616412.2020.1834775. [38] Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, et al. Evaluation of the safety and efficacy of repeated mesenchymal stem cell transplantations in ALS patients by investigating patients' specific immunological and biochemical biomarkers[J].Diseases,2024,12(5):99.DOI:10.3390/diseases12050099. [39] Petrou P, Kassis I, Yaghmour NE, et al. A phase II clinical trial with repeated intrathecal injections of autologous mesenchymal stem cells in patients with amyotrophic lateral sclerosis[J].Front Biosci (Landmark Ed),2021,26(10):693-706.DOI:10.52586/4980. [40] Yamasoba T, Lin FR, Someya S, et al. Current concepts in age-related hearing loss: epidemiology and mechanistic pathways[J].Hear Res,2013,303:30-38.DOI:10.1016/j.heares.2013.01.021. [41] Someya S, Prolla TA. Mitochondrial oxidative damage and apoptosis in age-related hearing loss[J].Mech Ageing Dev,2010,131(7-8):480-486.DOI:10.1016/j.mad.2010.04.006. [42] 贺祖宏,李明,邹圣宇,等.老年性聋的发病机制及干预研究进展[J].中华耳鼻咽喉头颈外科杂志,2020,55(11):1105-1110.DOI:10.3760/cma.j.cn115330-20191218- 00763. [43] Pleen J, Townley R. Alzheimer's disease clinical trial update 2019-2021[J].J Neurol,2022,269(2):1038-1051.DOI:10.1007/s00415-021-10790-5. [44] Kobylecki C, Burn DJ, Kass-Iliyya L, et al. Randomized clinical trial of topiramate for levodopa-induced dyskinesia in parkinson's disease[J].Parkinsonism Relat Disord,2014,20(4):452-455.DOI:10.1016/j.parkreldis. 2014.01.016. [45] Wong C, Stavrou M, Elliott E, et al. Clinical trials in amyotrophic lateral sclerosis: a systematic review and perspective[J].Brain Commun,2021,3(4):fcab242.DOI:10.1093/braincomms/fcab242. |
[1] | 李晓童 于胜强. 肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718. |
[2] | 张涵 孙婷 王延飞 张肖林 车娟. 移植后淋巴组织增生性疾病在儿童扁桃体腺样体肥大中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 752-757. |
[3] | 莫家婵 范万峰 姜兴岳. 基于磁共振成像的影像组学在垂体腺瘤中的应用现状及进展 [J]. 国际医药卫生导报, 2025, 31(5): 757-760. |
[4] | 刘伟锋 郭媛 唐文洁 杨蕊梦 樊浩 魏新华. “医+X”人才培养模式对医学影像研究生综合能力培养的初探 [J]. 国际医药卫生导报, 2025, 31(4): 530-534. |
[5] | 郝慧慧 冯安华 马晓林 李敖 丁传华. SOAP思维模式下融合案例与问题教学模式在临床药学实习带教中的应用 [J]. 国际医药卫生导报, 2025, 31(4): 539-542. |
[6] | 洪金全 黄晓玲 黄震宇 黄豪博. 弥漫大B细胞淋巴瘤中脂质代谢异常及其干预的研究进展 [J]. 国际医药卫生导报, 2025, 31(4): 559-562. |
[7] | 曾令果 赵洲 刘为朋 胡宝光. 外科治疗高血压研究进展 [J]. 国际医药卫生导报, 2025, 31(3): 411-415. |
[8] | 邢文华 梁栋 刘洁 李梦洁 张晓敏. 线粒体动力学在糖尿病肾病中的作用及调节机制 [J]. 国际医药卫生导报, 2025, 31(2): 183-187. |
[9] | 孙虓 刘成霞 王娜 郝佳慧 储琳琳 于瑞杰. 探讨不良饮食习惯与腐胺及胃炎癌转化的关系 [J]. 国际医药卫生导报, 2025, 31(2): 221-223. |
[10] | 侯国玲 高栋梁 屈万丽 李明 王亚康. OIP5-AS1通过VEGF165调控ADSCs-Exos分泌促进创面愈合的研究 [J]. 国际医药卫生导报, 2025, 31(2): 247-252. |
[11] | 李香玉 郑慧娟 樊艳婷. 儿童流感嗜血杆菌感染特点及疾病进展的影响因素 [J]. 国际医药卫生导报, 2025, 31(2): 265-269. |
[12] | 姜泽军 汤胜宇 杨红玲. 炎症标志物在慢性心力衰竭临床预后评估中的作用 [J]. 国际医药卫生导报, 2025, 31(1): 42-46. |
[13] | 吴京霖 卢曼路 李明珍 刘璐 于燕 潘磊. 肠道菌群与阻塞性睡眠呼吸暂停综合征合并认知功能障碍的研究进展 [J]. 国际医药卫生导报, 2025, 31(1): 47-50. |
[14] | 曾宪虎 李明 李子龙 项旭 田慧 李惠珠 马龙杰 方笑丽 陈力 唐冉. 中西医关于溃疡性结肠炎的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1415-1418. |
[15] | 高雯雯 张翔 王红 尹雁惠. 小肠细菌过度生长的治疗新进展 [J]. 国际医药卫生导报, 2024, 30(9): 1418-1421. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||