国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (20): 3369-3372.DOI: 10.3760/cma.j.issn.1007-1245.2024.20.005
氧化应激相关通路在阿霉素诱导心脏毒性中的作用
李洋 程金凤 魏景迅 崔明丽 程艳丽
滨州医学院附属医院心内科,滨州 256600
收稿日期:2024-04-15
出版日期:2024-10-01
发布日期:2024-10-18
通讯作者:
程艳丽,Email:chengyanli0217@163.com
基金资助:山东省医药卫生科技项目(202303010661)
Role of oxidative stress-related pathways in doxorubicin-induced cardiomyopathy
Li Yang, Cheng Jinfeng, Wei Jingxun, Cui Mingli, Cheng Yanli
Department of Cardiology, Binzhou Medical University Hospital, Binzhou 256600, China
Received:2024-04-15
Online:2024-10-01
Published:2024-10-18
Contact:
Cheng Yanli, Email: chengyanli0217@163.com
Supported by:Shandong Province Medical Health Science and Technology Project (202303010661)
摘要:
阿霉素(DOX)是一种强效化疗药物,常用于单独或联合治疗多种癌症,临床应用可能会导致严重的心脏毒性。氧化应激在阿霉素诱导心脏毒性(DIC)中发挥了重要作用。该综述总结了DIC中与氧化应激有关的信号通路,包括Nrf2/Keap1/ARE、Sirt1/p66Shc信号通路,以及一氧化氮合酶(NOS)、氮氧化物(NOX)、亚铁离子(Fe2+)在氧化应激中的作用,尝试从氧化应激的角度解释DIC的发生机制,并为DIC防治的药物研究提供理论依据或新思路。
李洋 程金凤 魏景迅 崔明丽 程艳丽.
氧化应激相关通路在阿霉素诱导心脏毒性中的作用 [J]. 国际医药卫生导报, 2024, 30(20): 3369-3372.
Li Yang, Cheng Jinfeng, Wei Jingxun, Cui Mingli, Cheng Yanli.
Role of oxidative stress-related pathways in doxorubicin-induced cardiomyopathy [J]. International Medicine and Health Guidance News, 2024, 30(20): 3369-3372.
| [1] Johnson-Arbor K, Dubey R. Doxorubicin[M].Treasure Island (FL): StatPearls Publishing,2023:23. [2] Johnson M, Keyes D.Anthracycline toxicity[M].Treasure Island (FL): StatPearls Publishing,2024:17. [3] Wang X, Li C, Wang Q,et al. Tanshinone IIA restores dynamic balance of autophagosome/autolysosome in doxorubicin-induced cardiotoxicity via targeting beclin1/LAMP1[J]. Cancers (Basel), 2019,11(7):910.DOI: 10.3390/cancers11070910. [4] Liang X, Wang S, Wang L,et al. Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission[J]. Pharmacol Res, 2020,157:104846.DOI: 10.1016/j.phrs.2020.104846. [5] Aryal B, Rao VA. Deficiency in cardiolipin reduces doxorubicin-induced oxidative stress and mitochondrial damage in human B-lymphocytes[J]. PLoS One, 2016,11(7):e0158376.DOI: 10.1371/journal.pone.0158376. [6] de Oliveira BL, Niederer S. A biophysical systems approach to identifying the pathways of acute and chronic doxorubicin mitochondrial cardiotoxicity[J]. PLoS Comput Biol, 2016,12(11):e1005214.DOI: 10.1371/journal.pcbi.1005214. [7] Mukhopadhyay P, Rajesh M, Bátkai S,et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro[J]. Am J Physiol Heart Circ Physiol, 2009,296(5):H1466-83.DOI: 10.1152/ajpheart.00795.2008. [8] Yao Y, Xu X, Zhang G,et al. Role of HMGB1 in doxorubicin-induced myocardial apoptosis and its regulation pathway[J]. Basic Res Cardiol, 107(3):267.DOI: 10.1007/s00395-012-0267-3. [9] Sangomla S, Saifi MA, Khurana A,et al. Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation[J]. J Trace Elem Med Biol, 2018,47:53-62.DOI: 10.1016/j.jtemb.2018.01.016. [10] Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Physiol Rev, 2018,98(3):1169-1203.DOI: 10.1152/physrev.00023.2017. [11] Fão L, Mota SI, Rego AC. Shaping the Nrf2-ARE-related pathways in alzheimer's and parkinson's diseases[J]. Ageing Res Rev, 2019,54:100942.DOI: 10.1016/j.arr.2019.100942. [12] Nordgren KKS, Wallace KB. Disruption of the Keap1/Nrf2-antioxidant response system after chronic doxorubicin exposure in vivo[J]. Cardiovasc Toxicol, 2020,20(6):557-570.DOI: 10.1007/s12012-020-09581-7. [13] Yu X, Cui L, Zhang Z,et al. α-Linolenic acid attenuates doxorubicin-induced cardiotoxicity in rats through suppression of oxidative stress and apoptosis[J]. Acta Biochim Biophys Sin (Shanghai), 2013,45(10):817-826.DOI: 10.1093/abbs/gmt082. [14] Bai Y, Chen Q, Sun YP,et al. Sulforaphane protection against the development of doxorubicin-induced chronic heart failure is associated with Nrf2 Upregulation[J]. Cardiovasc Ther, 2017,35(5):1-12.DOI: 10.1111/1755-5922.12277. [15] Kamble SM, Patil CR. Asiatic acid ameliorates doxorubicin-induced cardiac and hepato-renal toxicities with Nrf2 transcriptional factor activation in rats[J]. Cardiovasc Toxicol, 2018,18(2):131-141.DOI: 10.1007/s12012-017-9424-0. [16] Sampaio SF, Branco AF, Wojtala A,et al. p66Shc signaling is involved in stress responses elicited by anthracycline treatment of rat cardiomyoblasts[J]. Arch Toxicol, 2016,90(7):1669-1684.DOI: 10.1007/s00204-015-1583-9. [17] Hao C, Wu X, Zhou R,et al. Downregulation of p66Shc can reduce oxidative stress and apoptosis in oxidative stress model of marginal cells of stria vascularis in sprague dawley rats[J]. Drug Des Devel Ther, 2019,13:3199-3206.DOI: 10.2147/DDDT.S214918. [18] Zhang H, Pang X, Yu H,et al. Genistein suppresses ox-LDL-elicited oxidative stress and senescence in HUVECs through the SIRT1-p66shc-foxo3a pathways[J]. J Biochem Mol Toxicol, 2022,36(1):e22939.DOI: 10.1002/jbt.22939. [19] Yan H, Jihong Y, Feng Z,et al. Sirtuin 1-mediated inhibition of p66shc expression alleviates liver ischemia/reperfusion injury[J]. Crit Care Med, 2014,42(5):e373-381. DOI: 10.1097/CCM.0000000000000246. [20] Wu YZ, Zhang L, Wu ZX,et al. Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway[J]. Oxid Med Cell Longev, 2019,2019:2150394.DOI: 10.1155/2019/2150394. [21] Zhu JN, Fu YH, Hu ZQ,et al. Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity[J]. Sci Rep, 2017,7(1):11879.DOI: 10.1038/s41598-017-12192-y. [22] Priya LB, Baskaran R, Huang CY,et al. Neferine ameliorates cardiomyoblast apoptosis induced by doxorubicin: possible role in modulating NADPH oxidase/ROS-mediated NFκB redox signaling cascade[J]. Sci Rep, 2017,7(1):12283.DOI: 10.1038/s41598-017-12060-9. [23] Cheng D, Chen L, Tu W,et al. Protective effects of valsartan administration on doxorubicin‑induced myocardial injury in rats and the role of oxidative stress and NOX2/NOX4 signaling[J]. Mol Med Rep, 2020,22(5):4151-4162.DOI: 10.3892/mmr.2020.11521. [24] Zeng C, Duan F, Hu J,et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy[J]. Redox Biol,2020,34:101523.DOI: 10.1016/j.redox.2020.101523. [25] Ma J, Wang Y, Zheng D,et al. Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways[J]. Cardiovasc Res, 2013,97(1):77-87.DOI: 10.1093/cvr/cvs309. [26] Zhang X, Hu C, Kong CY,et al. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT[J]. Cell Death Differ, 2020,27(2):540-555.DOI: 10.1038/s41418-019-0372-z. [27] Luu AZ, Chowdhury B, Al-Omran M,et al. Role of endothelium in doxorubicin-induced cardiomyopathy[J]. JACC Basic Transl Sci, 2018,3(6):861-870.DOI: 10.1016/j.jacbts.2018.06.005. [28] Malik A, Bagchi AK, Vinayak K,et al. Vitamin C: historical perspectives and heart failure[J]. Heart Fail Rev, 2021,26(3):699-709. DOI: 10.1007/s10741-020-10036-y. [29] Shi S, Chen Y, Luo Z,et al. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy[J]. Cell Commun Signal, 2023,21(1):61.DOI: 10.1186/s12964-023- 01077-5. [30] Akolkar G, Bagchi AK, Ayyappan P,et al. Doxorubicin-induced nitrosative stress is mitigated by vitamin C via the modulation of nitric oxide synthases[J]. Am J Physiol Cell Physiol, 2017,312(4):C418-C427.DOI: 10.1152/ajpcell.00356.2016. [31] Huang WP, Yin WH, Chen JS,et al. Fenofibrate attenuates doxorubicin-induced cardiac dysfunction in mice via activating the eNOS/EPC pathway[J]. Sci Rep, 2021,11(1):1159.DOI: 10.1038/s41598-021-80984-4. [32] Mu H, Liu H, Zhang J,et al. Ursolic acid prevents doxorubicin-induced cardiac toxicity in mice through eNOS activation and inhibition of eNOS uncoupling[J]. J Cell Mol Med, 2019,23(3):2174-2183. DOI: 10.1111/jcmm.14130. [33] Octavia Y, Kararigas G, de Boer M,et al. Folic acid reduces doxorubicin-induced cardiomyopathy by modulating endothelial nitric oxide synthase[J]. J Cell Mol Med, 2017,21(12):3277-3287.DOI: 10.1111/jcmm.13231. [34] Tadokoro T, Ikeda M, Ide T,et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity[J]. JCI Insight, 2020,5(9):e132747.DOI: 10.1172/jci.insight.132747. [35] Imai H, Matsuoka M, Kumagai T,et al. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis[J]. Curr Top Microbiol Immunol, 2017,403:143-170.DOI: 10.1007/82_2016_508. [36] Luo LF, Guan P, Qin LY,et al. Astragaloside IV inhibits adriamycin-induced cardiac ferroptosis by enhancing Nrf2 signaling[J]. Mol Cell Biochem, 2021,476(7):2603-2611.DOI: 10.1007/s11010-021-04112-6. [37] Milczarek A, Starzyński RR, Styś A,et al. A drastic superoxide-dependent oxidative stress is prerequisite for the down-regulation of IRP1: Insights from studies on SOD1-deficient mice and macrophages treated with paraquat[J]. PLoS One, 2017,12(5):e0176800.DOI: 10.1371/journal.pone.0176800. [38] Fang X, Wang H, Han D,et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A,2019,116(7):2672-2680.DOI: 10.1073/pnas.1821022116. [39] Menon AV, Kim J. Iron promotes cardiac doxorubicin retention and toxicity through downregulation of the mitochondrial exporter ABCB8[J]. Front Pharmacol, 2022,13:817951.DOI: 10.3389/fphar.2022.817951. |
| [1] | 肖正平 李保松 张智睿 蒋宏. 基于Cajal间质细胞治疗慢传输型便秘患者的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1409-1414. |
| [2] | 王稳 苟志平 谭钢文 李欢. 血清GDF-11及TSG-6水平与扩张型心肌病患者心力衰竭风险的相关性 [J]. 国际医药卫生导报, 2024, 30(8): 1243-1248. |
| [3] | 杨寿娟 张海涛 崔明丽 王建 李洋 程艳丽. Wnt信号通路在急性心肌梗死中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1291-1296. |
| [4] | 刘志强 张翠 董文敬 刘振 孙经武. 心肌纤维化与AMPK-mTOR-ULK1信号通路研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1297-1300. |
| [5] | 王霞 赛海芳. 代谢组学在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1312-1316. |
| [6] | 邵爽 郭纪伟 孟玮. m6A及m5C甲基化修饰通过促进细胞增殖与转移影响癌症的发生和发展 [J]. 国际医药卫生导报, 2024, 30(8): 1316-1320. |
| [7] | 崔筱 刘亮. 辣椒素受体在腹泻型肠易激综合征发病中的作用 [J]. 国际医药卫生导报, 2024, 30(7): 1066-1070. |
| [8] | 张小静 王晓琴 屈源. 重组组织型纤溶酶原激活剂联合依达拉奉右莰醇对缺血性脑卒中患者的临床疗效 [J]. 国际医药卫生导报, 2024, 30(7): 1131-1136. |
| [9] | 李小妹 卢健 覃莉 凌燕兰. 卵巢过度刺激综合征患者的护理干预研究现状 [J]. 国际医药卫生导报, 2024, 30(7): 1199-1202. |
| [10] | 贺恒奕 张小伟 陈宁杰. 吸烟对肩袖损伤及预后的影响 [J]. 国际医药卫生导报, 2024, 30(5): 710-712. |
| [11] | 古路路 吴福玲. 葛根素在呼吸系统疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(4): 586-589. |
| [12] | 朱俊 姚帅辉 郭小磊. 右归丸辅助骨髓间充质干细胞对家兔骨质疏松性骨折愈合的影响及机制初探 [J]. 国际医药卫生导报, 2024, 30(3): 453-459. |
| [13] | 王声远 赵健 何文欢 刘子庾 徐燕. 仿真头模在口腔临床实践教学中的应用与展望 [J]. 国际医药卫生导报, 2024, 30(20): 3509-3513. |
| [14] | 蔡艺威 闫晨名 岳林皓 王晓红 贾中明. 脂质代谢在乳腺癌进展过程中的重要作用与机制 [J]. 国际医药卫生导报, 2024, 30(15): 2470-2473. |
| [15] | 周密 李建锋 余斐. 超声引导下球囊扩张术在尿毒症维持性血液透析患者动静脉内瘘狭窄治疗中的应用 [J]. 国际医药卫生导报, 2024, 30(15): 2553-2557. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||