[1] 林薇,陈旭征,曹治云,等. 蒲葵子乙醇提取物调控p21/CDK1/CyclinB1诱导肝癌细胞G2/M期阻滞的机制研究[J]. 福建中医药,2022,53(5):24-27. DOI:10.3969/j.issn.1000-338X.2022.05.007.
[2] Lin W, Zhao J, Cao Z, et al. Livistona chinensis seed suppresses hepatocellular carcinoma growth through promotion of mitochondrial-dependent apoptosis[J]. Oncol Rep, 2013, 29(5):1859-1866. DOI: 10.3892/or.2013.2319.
[3] Lin W, Zhao J, Cao Z, et al. Livistona chinensis seeds inhibit hepatocellular carcinoma angiogenesis in vivo via suppression of the Notch pathway[J]. Oncol Rep, 2014, 31(4):1723-1728. DOI: 10.3892/or.2014.3051.
[4] Cao Z, Zheng L, Zhao J, et al. Anti-angiogenic effect of Livistona chinensis seed extract in vitro and in vivo[J]. Oncol Lett, 2017, 14(6):7565-7570. DOI: 10.3892/ol.2017.7075.
[5] 刘俊斌,吴卫红,靳君华.蒲葵子乙醇提取物对人肝癌Bel-7402细胞增殖和迁移的影响[J].中国现代医学杂志,2015,25(24):14-18.DOI:10.3969/j.issn.1005-8982.2015.24.004.
[6] Liang Y, Ye F, Luo D, et al. Exosomal circSIPA1L3-mediated intercellular communication contributes to glucose metabolic reprogramming and progression of triple negative breast cancer[J]. Mol Cancer, 2024, 23(1):125. DOI: 10.1186/s12943-024-02037-4.
[7] Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(46): 6433-6477. DOI: 10.3748/wjg.v28.i46.6433.
[8] 皮爱荣,彭伟. 中国人群中血清TK1对原发性肝癌诊断价值的meta分析[J]. 国际医药卫生导报,2023,29(5):606-613. DOI:10.3760/cma.j.issn.1007-1245.2023.05.004.
[9] Ye Y, Hu Q, Chen H, et al. Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy[J]. Nat Metab, 2019, 1(4):431-444. DOI: 10.1038/s42255-019-0045-8.
[10] Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology[J]. Cell, 2017,168(4):657-669. DOI: 10.1016/j.cell.2016.12.039.
[11] Zhao J, Jin D, Huang M, et al. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target[J]. Front Cell Dev Biol, 2024, 12: 1416472. DOI: 10.3389/fcell.2024.1416472.
[12] Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor[J]. Cancer Commun (Lond), 2024, 44(7): 761-786. DOI: 10.1002/cac2.12549.
[13] Li RL, He LY, Zhang Q, et al. HIF-1α is a potential molecular target for herbal medicine to treat diseases[J]. Drug Des Devel Ther, 2020, 14:4915-4949. DOI: 10.2147/DDDT.S274980.
[14] Zhai X, Yang R, Chu Q, et al. AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress[J]. Nat Cell Biol, 2025, 27(1):141-153. DOI: 10.1038/s41556-024-01549-x.
[15] Fan H, Wu Y, Yu S, et al. Critical role of mTOR in regulating aerobic glycolysis in carcinogenesis (Review) [J]. Int J Oncol, 2021, 58(1): 9-19. DOI: 10.3892/ijo.2020.5152.
[16] 梁钰博,李凌娟,刘柏杨,等. 高原缺氧应激与肝细胞癌研究进展[J]. 四川大学学报(医学版),2024,55(6):1436-1445. DOI:10.12182/20241160605.
[17] 许智星,陈希,李炫辰,等. 胶质瘤干细胞在肿瘤微环境中代谢调控的研究进展[J]. 医学综述,2019,25(10):1942-1948. DOI:10.3969/j.issn.1006-2084.2019.10.014.
[18] 江圆,陈亚,谢杨阳,等. 葡萄糖代谢重编程在肿瘤基础研究及临床诊疗中的研究进展[J]. 肿瘤防治研究,2021,48(6):635-641. DOI:10.3971/j.issn.1000-8578.2021.20.1425.
[19] 张琪松,方川,张子奇,等. 缺氧调控胶质母细胞瘤代谢重编程介导耐药的研究进展[J]. 临床肿瘤学杂志,2022,27(12):1138-1145. DOI:10.3969/j.issn.1009-0460.2022.12.014.
[20] Infantino V, Santarsiero A, Convertini P, et al. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target[J]. Int J Mol Sci, 2021, 22(11):5703. DOI: 10.3390/ijms22115703.
[21] Mo Y, Wang Y, Zhang S, et al. Circular RNA circRNF13 inhibits proliferation and metastasis of nasopharyngeal carcinoma via SUMO2[J]. Mol Cancer, 2021, 20(1):112. DOI: 10.1186/s12943-021-01409-4..
[22] Li W, Dasgupta A, Yang K, et al. Turnover atlas of proteome and phosphoproteome across mouse tissues and brain regions[J]. Cell, 2025, 188(8):2267-2287.e21. DOI: 10.1016/j.cell.2025.02.021.
[23] 马澜婧,张百红. 乳腺癌休眠机制研究进展[J]. 肿瘤防治研究,2023,50(12):1237-1242. DOI:10.3971/j.issn.1000-8578.2023.23.0602.
[24] Nie H, Ju H, Fan J, et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth[J]. Nat Commun, 2020, 11(1):36. DOI: 10.1038/s41467-019-13601-8.
[25] Einarsson H, Salvatore M, Vaagensø C, et al. Promoter sequence and architecture determine expression variability and confer robustness to genetic variants[J]. Elife, 2022, 11: e80943. DOI: 10.7554/eLife.80943.
|