[1]Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023 [J]. CA Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[2]Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma [J]. Nat Rev Dis Primers, 2021, 7(1): 6. DOI: 10.1038/s41572-020-00240-3.
[3]Calderaro J, Seraphin TP, Luedde T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma [J]. J Hepatol, 2022, 76(6): 1348-1361. DOI: 10.1016/j.jhep.2022.01.014.
[4]Tangsrivimol JA, Darzidehkalani E, Virk HUH, et al. Benefits, limits, and risks of ChatGPT in medicine [J]. Front Artif Intell, 2025, 8: 1518049. DOI: 10.3389/frai.2025.1518049.
[5]Conroy G, Mallapaty S. How China created AI model DeepSeek and shocked the world [J]. Nature, 2025, 638(8050): 300-301. DOI: 10.1038/d41586-025-00259-0.
[6]Dimopoulos P, Mulita A, Antzoulas A, et al. The role of artificial intelligence and image processing in the diagnosis, treatment, and prognosis of liver cancer: a narrative-review [J]. Prz Gastroenterol, 2024, 19(3): 221-230. DOI: 10.5114/pg.2024.143147.
[7]Xiong M, Xu Y, Zhao Y, et al. Quantitative analysis of artificial intelligence on liver cancer: a bibliometric analysis [J]. Front Oncol, 2023, 13: 990306. DOI: 10.3389/fonc.2023.990306.
[8]Bakrania A, Joshi N, Zhao X, et al. Artificial intelligence in liver cancers: decoding the impact of machine learning models in clinical diagnosis of primary liver cancers and liver cancer metastases [J]. Pharmacol Res, 2023, 189: 106706. DOI: 10.1016/j.phrs.2023.106706.
[9]Kim SS, Lee J, Ahn SB, et al. Clinical course and prognosis of long-term survivors of hepatocellular carcinoma [J]. Aliment Pharmacol Ther, 2025, 61(8): 1333-1342. DOI: 10.1111/apt.70004.
[10]Jin T, Luo M, Chen F, et al. Harnessing the power of AI for enhanced diagnosis and treatment of hepatocellular carcinoma [J]. Turk J Gastroenterol, 2024, 36(4): 200-208. DOI: 10.5152/tjg.2024.24325.
[11]Yang Y, Bo Z, Wang J, et al. Machine learning based on alcohol drinking-gut microbiota-liver axis in predicting the occurrence of early-stage hepatocellular carcinoma [J]. BMC Cancer, 2024, 24(1): 1468. DOI: 10.1186/s12885-024-13161-1.
[12]Shin H, Hur MH, Song BG, et al. AI model using CT-based imaging biomarkers to predict hepatocellular carcinoma in patients with chronic hepatitis B [J]. J Hepatol, 2024: S0168-8278(24)02784-3. DOI: 10.1016/j.jhep.2024.12.029.
[13]Salehi MA, Harandi H, Mohammadi S, et al. Diagnostic performance of artificial intelligence in detection of hepatocellular carcinoma: a meta-analysis [J]. J Imaging Inform Med, 2024, 37(4): 1297-1311. DOI: 10.1007/s10278-024-01058-1.
[14]Şahin E, Tatar OC, Ulutaş ME, et al. Diagnostic performance of deep learning applications in hepatocellular carcinoma detection using computed tomography imaging [J]. Turk J Gastroenterol, 2024, 36(2): 124-130. DOI: 10.5152/tjg.2024.24538.
[15]刘一萍,李新平,陈磊,等.基于人工智能的肝细胞癌精准影像学诊断和复发预测[J].临床肝胆病杂志,2022,38(3):521-527. DOI:10.3969/j.issn.1001-5256.2022.03.006.
[16]Lee IC, Tsai YP, Lin YC, et al. A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images [J]. Cancer Imaging, 2024, 24(1): 43. DOI: 10.1186/s40644-024-00686-8.
[17]Laohawetwanit T, Apornvirat S, Namboonlue C. Thinking like a pathologist: Morphologic approach to hepatobiliary tumors by ChatGPT [J]. Am J Clin Pathol, 2025, 163(1): 3-11. DOI: 10.1093/ajcp/aqae087.
[18]Takamoto T, Mihara Y, Nishioka Y, et al. Surgical treatment for hepatocellular carcinoma in era of multidisciplinary strategies [J]. Int J Clin Oncol, 2025, 30(3): 417-426. DOI: 10.1007/s10147-025-02703-7.
[19]Zheng J, Wang S, Xia L, et al. Hepatocellular carcinoma: signaling pathways and therapeutic advances [J]. Signal Transduct Target Ther, 2025, 10(1): 35. DOI: 10.1038/s41392-024-02075-w.
[20]Quan B, Li J, Mi H, et al. Development and preliminary validation of a novel convolutional neural network model for predicting treatment response in patients with unresectable hepatocellular carcinoma receiving hepatic arterial infusion chemotherapy [J]. J Imaging Inform Med, 2024, 37(4): 1282-1296. DOI: 10.1007/s10278-024-01003-2.
[21]An C, Wei R, Liu W, et al. Machine learning-based decision support model for selecting intra-arterial therapies for unresectable hepatocellular carcinoma: a national real-world evidence-based study [J]. Br J Cancer, 2024, 131(5): 832-842. DOI: 10.1038/s41416-024-02784-7.
[22]Eghbali S, Heumann TR. Next-generation immunotherapy for hepatocellular carcinoma: mechanisms of resistance and novel treatment approaches [J]. Cancers (Basel), 2025, 17(2): 236. DOI: 10.3390/cancers17020236.
[23]Zeng Q, Klein C, Caruso S, et al. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study [J]. Lancet Oncol, 2023, 24(12): 1411-1422. DOI: 10.1016/S1470-2045(23)00468-0.
[24]Nakao Y, Nishihara T, Sasaki R, et al. Investigation of deep learning model for predicting immune checkpoint inhibitor treatment efficacy on contrast-enhanced computed tomography images of hepatocellular carcinoma [J]. Sci Rep, 2024, 14(1): 6576. DOI: 10.1038/s41598-024-57078-y.
[25]European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma [J]. J Hepatol, 2025, 82(2): 315-374. DOI: 10.1016/j.jhep.2024.08.028.
[26]Romeo M, Dallio M, Napolitano C, et al. Clinical applications of artificial intelligence (AI) in human cancer: is it time to update the diagnostic and predictive models in managing hepatocellular carcinoma (HCC)? [J]. Diagnostics (Basel), 2025, 15(3): 252. DOI: 10.3390/diagnostics15030252.
[27]Wang S, Shao M, Fu Y, et al. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis [J]. Sci Rep, 2024, 14(1): 13232. DOI: 10.1038/s41598-024-63531-9.
[28]Zhang Y, Shi K, Feng Y, et al. Machine learning model using immune indicators to predict outcomes in early liver cancer [J]. World J Gastroenterol, 2025, 31(5):101722. DOI: 10.3748/wjg.v31.i5.101722.
[29]Xia F, Chen Q, Liu Z, et al. Machine learning models for predicting postoperative peritoneal metastasis after hepatocellular carcinoma rupture: a multicenter cohort study in China [J]. Oncologist, 2025, 30(1): oyae341. DOI: 10.1093/oncolo/oyae341.
[30]Wu L, Lai Q, Li S, et al. Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: a systematic review and meta-analysis [J]. BMC Med Imaging, 2024, 24(1): 263. DOI: 10.1186/s12880-024-01440-z.
|