国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (9): 1409-1414.DOI: 10.3760/cma.j.issn.1007-1245.2024.09.001
• 消化道疾病专栏 • 下一篇
基于Cajal间质细胞治疗慢传输型便秘患者的研究进展
肖正平 李保松 张智睿 蒋宏
滨州医学院附属医院结直肠疝外科,滨州 256603
收稿日期:
2024-01-16
出版日期:
2024-05-01
发布日期:
2024-05-30
通讯作者:
蒋宏,Email:byfyjzcjh@126.com
基金资助:
国家卫生健康委科技发展中心“微创手术临床应用规范化研究”课题(WA2021RW12);滨州医学院科研计划(BY2021KJ35)
Research progress on treatment for patients with slow transit constipation based on interstitial cells of Cajal
Xiao Zhengping, Li Baosong, Zhang Zhirui, Jiang Hong
Department of Colorectal and Hernia Surgery, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2024-01-16
Online:
2024-05-01
Published:
2024-05-30
Contact:
Jiang Hong, Email: byfyjzcjh@126.com
Supported by:
Project of "Study on Standardization of Clinical Application of Minimally Invasive Surgery" of Science and Technology Development Center of National Health Commission (WA2021RW12); Scientific Research Program of Binzhou Medical University (BY2021KJ35)
摘要:
慢传输型便秘(slow transit constipation,STC)是功能性便秘的一种常见类型,以结肠蠕动缓慢、肠道内容物排出延迟为特点,常伴有排便次数少、排便困难等症状。研究表明,STC的发生与Cajal间质细胞(interstitial cells of Cajal,ICCs)的异常改变有关。本文通过总结ICCs的分类、标志物、功能及其与STC的关系发现ICCs的数量和功能异常可影响STC患者的症状。此外,本文还总结了STC的不同治疗措施如微生态制剂、中医药、物理疗法和分子治疗对ICCs的潜在影响,并提供了STC患者治疗的新思路。笔者认为,ICCs可作为STC患者治疗的潜在靶标,未来研究应当关注ICCs在STC发病机制中的作用,开发特异性治疗手段,并评估干细胞疗法和基因疗法等新兴策略在临床中应用的可能性,为STC患者提供新的治疗选择。
肖正平 李保松 张智睿 蒋宏.
基于Cajal间质细胞治疗慢传输型便秘患者的研究进展 [J]. 国际医药卫生导报, 2024, 30(9): 1409-1414.
Xiao Zhengping, Li Baosong, Zhang Zhirui, Jiang Hong.
Research progress on treatment for patients with slow transit constipation based on interstitial cells of Cajal [J]. International Medicine and Health Guidance News, 2024, 30(9): 1409-1414.
[1] Tanner S, Chaudhry A, Goraya N, et al. Prevalence and clinical characteristics of dyssynergic defecation and slow transit constipation in patients with chronic constipation []. J Clin Med, 2021, 10(9): 2027. DOI: 10.3390/jcm10092027. [2] Jiang Q, Garcia A, Han M, et al. Electrostatic stabilization plays a central role in autoinhibitory regulation of the Na+,K+-ATPase [J]. Biophys J, 2017, 112(2): 288-299. DOI: 10.1016/j.bpj.2016.12.008. [3] Yuan Y, Lu Y, Zhang Z, et al. Characteristics of the Cajal interstitial cells and intestinal microbiota in children with refractory constipation [J]. Microb Pathog, 2023, 184: 106373. DOI: 10.1016/j.micpath.2023.106373. [4] Huizinga JD, Hussain A, Chen JH. Interstitial cells of Cajal and human colon motility in health and disease [J]. Am J Physiol Gastrointest Liver Physiol, 2021, 321(5): G552-G575. DOI: 10.1152/ajpgi.00264.2021. [5] Gfroerer S, Rolle U. Interstitial cells of Cajal in the normal human gut and in Hirschsprung disease [J]. Pediatr Surg Int, 2013, 29(9): 889-897. DOI: 10.1007/s00383-013- 3364-y. [6] Liu Y, Liu Z, Wang K. The Ca2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? [J]. Acta Pharm Sin B, 2021, 11(6):1412-1433. DOI: 10.1016/j.apsb. 2020.12.003. [7] Blair PJ, Rhee PL, Sanders KM, et al. The significance of interstitial cells in neurogastroenterology [J]. J Neurogastroenterol Motil, 2014, 20(3): 294-317. DOI: 10.5056/jnm14060. [8] Vannucchi MG, Traini C. Interstitial cells of Cajal and telocytes in the gut: twins, related or simply neighbor cells? []. Biomol Concepts, 2016, 7(2):93-102. DOI: 10.1515/bmc-2015-0034. [9] Sanders KM, Santana LF, Baker SA. Interstitial cells of Cajal - pacemakers of the gastrointestinal tract [J]. J Physiol, 2023. DOI: 10.1113/JP284745. [10] McCann CJ, Hwang SJ, Bayguinov Y, et al. Establishment of pacemaker activity in tissues allotransplanted with interstitial cells of Cajal [J]. Neurogastroenterol Motil, 2013, 25(6):e418-e428. DOI: 10.1111/nmo.12140. [11] Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel [J]. J Clin Invest, 2015, 125(3): 899-907. DOI: 10.1172/JCI76307. [12] Pasternak A, Szura M, Gil K, et al. Interstitial cells of Cajal - systematic review [J]. Folia Morphol (Warsz), 2016, 75(3): 281-286. DOI: 10.5603/FM.a2016.0002. [13] Piotrowska AP, Solari V, Puri P. Distribution of heme oxygenase-2 in nerves and interstitial cells of Cajal in the normal pylorus and in infantile hypertrophic pyloric stenosis [J]. Arch Pathol Lab Med, 2003, 127(9): 1182-1186. DOI: 10.5858/2003-127-1182-DOHOIN. [14] Kraichely RE, Farrugia G. Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract [J]. Neurogastroenterol Motil, 2007, 19(4): 245-252. DOI: 10.1111/j.1365-2982.2006.00880.x. [15] Radenkovic G, Radenkovic D, Velickov A. Development of interstitial cells of Cajal in the human digestive tract as the result of reciprocal induction of mesenchymal and neural crest cells [J]. J Cell Mol Med, 2018, 22(2): 778-785. DOI: 10.1111/jcmm.13375. [16] Powley TL, Wang XY, Fox EA, et al. Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus [J]. Neurogastroenterol Motil, 2008, 20(1): 69-79. DOI: 10.1111/j.1365-2982.2007.00990.x. [17] 姜洪宇,陈萌,于永铎. 中医药调控慢传输型便秘Cajal间质细胞表达研究进展[J]. 辽宁中医药大学学报,2022,24(11):118-122. DOI:10.13194/j.issn.1673-842x.2022.11.023. [18] Wang H, Ren B, Pan J, et al. Effect of miR-129-3p on autophagy of interstitial cells of Cajal in slow transit constipation through SCF C-kit signaling pathway [J]. Acta Biochim Pol, 2022, 69(3): 579-586. DOI: 10.18388/abp.2020_5877. [19] Zheng H, Liu YJ, Chen ZC, et al. miR-222 regulates cell growth, apoptosis, and autophagy of interstitial cells of Cajal isolated from slow transit constipation rats by targeting c-kit [J]. Indian J Gastroenterol, 202, 40(2): 198-208. DOI: 10.1007/s12664-020-01143-7. [20] Zhang YC, Chen BX, Xie XY, et al. Role of Tenascin-X in regulating TGF-β/Smad signaling pathway in pathogenesis of slow transit constipation [J]. World J Gastroenterol, 2020, 26(7): 717-724. DOI: 10.3748/wjg.v26.i7.717. [21] 占煜,闻永,杜丽娟,等. 橙皮苷改善洛哌丁胺诱导便秘大鼠结肠SIP合胞体功能的研究[J]. 中国中西医结合杂志,2023,43(1):67-75. DOI:10.7661/j.cjim.20220831.211. [22] Gong WJ, Li R, Dai QQ, et al. METTL3 contributes to slow transit constipation by regulating miR-30b-5p/PIK3R2/Akt/mTOR signaling cascade through DGCR8 [J]. J Gastroenterol Hepatol, 2022, 37(12): 2229-2242. DOI: 10.1111/jgh.15994. [23] Cheng S, Li B, Ding Y, et al. The probiotic fermented milk of Lacticaseibacillus paracasei JY062 and Lactobacillus gasseri JM1 alleviates constipation via improving gastrointestinal motility and gut microbiota [J]. J Dairy Sci, 2024, 107(4):1857-1876. DOI: 10.3168/jds.2023-24154. [24] Huang Y, Guo Y, Li X, et al. Effects of Lactiplantibacillus plantarum GUANKE on diphenoxylate-induced slow transit constipation and gut microbiota in mice [J]. Nutrients, 2023, 15(17): 3741. DOI: 10.3390/nu15173741. [25] Guo Y, Song L, Huang Y, et al. Latilactobacillus sakei Furu2019 and stachyose as probiotics, prebiotics, and synbiotics alleviate constipation in mice [J]. Front Nutr, 2023, 9:1039403. DOI: 10.3389/fnut.2022.1039403. [26] Kim MG, Jo K, Cho K, et al. Prebiotics/probiotics mixture induced changes in cecal microbiome and intestinal morphology alleviated the loperamide-induced constipation in rat [J]. Food Sci Anim Resour, 2021, 41(3): 527-541. DOI: 10.5851/kosfa.2021.e17. [27] Zhou X, Qian H, Zhang D, et al. Inhibition of autophagy of Cajal mesenchymal cells by gavage of tong bian decoction based on the rat model of chronic transit constipation [J]. Saudi J Biol Sci, 2020, 27(2): 623-628. DOI: 10.1016/j.sjbs.2019.11.040. [28] Su Y, Zhu R, Pang C, et al. Laxative effect of Wenyang Yiqi Decoction on loperamide-induced astriction model mice [J]. Ann Transl Med, 2023, 11(4):170. DOI: 10.21037/atm-23-6. [29] Zhou Q, Zhang D, Zhang H, et al. Effects of Xiao Chengqi Formula on slow transit constipation by assessing gut microbiota and metabolomics analysis in vitro and in vivo [J]. Front Pharmacol, 2022, 13:864598. DOI: 10.3389/fphar.2022.864598. [30] 李硕,杨晓玲,刘书斌,等. 益气活血通便方对慢传输型便秘大鼠的治疗作用及机制[J]. 中国实验方剂学杂志,2023,29(23):16-27. DOI:10.13422/j.cnki.syfjx.20231318. [31] 张远哲,黎豫川,赵罗娜. 附子-肉桂对慢传输型便秘大鼠5-HT信号通路及c-Kit表达的影响[J]. 世界科学技术-中医药现代化,2023,25(3):1111-1121. DOI:10.11842/wst.20220128012. [32] 张远哲,董文然,赵罗娜,等. 附子-肉桂配伍对阳虚型慢传输型便秘大鼠肠动力及SCF、c-Kit表达的影响[J]. 中国中西医结合杂志,2023,43(10):1228-1235. DOI:10.7661/j.cjim.20230828.058. [33] 陈思敏, 陈泰宇, 张智彬, 等. 基于mapk信号探讨增液汤调节慢传输型便秘大鼠cajal间质细胞增殖与凋亡的作用机制研究[J]. 中药材, 2023(9): 2324-2329. DOI: 10.13863/j.issn1001-4454.2023.09.037. [34] Gao X, Hu Y, Tao Y, et al. Cymbopogon citratus (DC.) Stapf aqueous extract ameliorates loperamide-induced constipation in mice by promoting gastrointestinal motility and regulating the gut microbiota [J]. Front Microbiol, 2022, 13: 1017804. DOI: 10.3389/fmicb.2022.1017804. [35] 黄礼,韦祎,刘英莲. 川陈皮素对慢传输型便秘小鼠的治疗作用及机制研究[J]. 世界科学技术-中医药现代化,2023,25(5):1736-1742. DOI:10.11842/wst.20211231002. [36] Yin H, Gao X, Yang H, et al. Total alditols from Cistanche deserticola attenuate functional constipation by regulating bile acid metabolism [J]. J Ethnopharmacol, 2024, 320: 117420. DOI: 10.1016/j.jep.2023.117420. [37] Zhang X, Zheng FJ, Zhang Z. Therapeutic effect of Cistanche deserticola on defecation in senile constipation rat model through stem cell factor/C-kit signaling pathway [J]. World J Gastroenterol, 2021, 27(32):5392-5403. DOI: 10.3748/wjg.v27.i32.5392. [38] Yan S, Yue YZ, Wang XP, et al. Aqueous extracts of Herba Cistanche promoted intestinal motility in loperamide-induced constipation rats by ameliorating the interstitial cells of Cajal [J]. Evid Based Complement Alternat Med, 2017: 6236904. DOI: 10.1155/2017/6236904. [39] Wang Y, Jiang H, Wang L, et al. Arctiin alleviates functional constipation by enhancing intestinal motility in mice [J]. Exp Ther Med, 2023, 25(5): 199. DOI: 10.3892/etm.2023.11898. [40] Wang Y, Jiang H, Wang L, et al. Luteolin ameliorates loperamide-induced functional constipation in mice [J]. Braz J Med Biol Res, 2023, 56:e12466. DOI: 10.1590/1414-431X2023e12466. [41] Yao Z, Fu S, Ren B, et al. Based on network pharmacology and gut microbiota analysis to investigate the mechanism of the laxative effect of pterostilbene on loperamide-induced slow transit constipation in mice [J]. Front Pharmacol, 2022, 13:913420. DOI: 10.3389/fphar.2022.913420. [42] He Q, Han C, Huang L, et al. Astragaloside Ⅳ alleviates mouse slow transit constipation by modulating gut microbiota profile and promoting butyric acid generation [J]. J Cell Mol Med, 2020, 24(16): 9349-9361. DOI: 10.1111/jcmm.15586. [43] Liu Y, Yang L, Bi C, et al. Nostoc sphaeroides Kütz polysaccharide improved constipation and promoted intestinal motility in rats [J]. Evid Based Complement Alternat Med, 2021: 5596531. DOI: 10.1155/2021/5596531. [44] Liu W, Zhi A. The potential of Quercetin to protect against loperamide-induced constipation in rats [J]. Food Sci Nutr, 2021, 9(6):3297-3307. DOI: 10.1002/fsn3.2296. [45] 何元琴,刘家峰,刘浩鑫. 针刺治疗慢传输型便秘作用机制的研究进展[J]. 针刺研究,2023,48(4):411-414. DOI:10.13702/j.1000-0607.20211387. [46] 吕琪,孙瑜培,张莘,等. 深刺"天枢"对慢传输型便秘大鼠结肠动力的影响[J]. 针刺研究,2023,48(7):643-649. DOI:10.13702/j.1000-0607.20220588. [47] Kuang H, Zhang C, Zhang W, et al. Electroacupuncture improves intestinal motility through exosomal miR-34c-5p targeting SCF/c-kit signaling pathway in slow transit constipation model rats [J]. Evid Based Complement Alternat Med, 2022: 8043841. DOI: 10.1155/2022/8043841. [48] 曹洋,钟峰,文钱,等. 基于胶质细胞源性神经营养因子甲基化修饰探讨电针改善慢传输型便秘大鼠肠动力的作用机制[J]. 针刺研究,2022,47(2):141-147,153. DOI:10.13702/j.1000-0607.20210253. [49] Zhang Y, Lu T, Dong Y, et al. Auricular vagal nerve stimulation enhances gastrointestinal motility and improves interstitial cells of Cajal in rats treated with loperamide [J]. Neurogastroenterol Motil, 2021, 33(10): e14163. DOI: 10.1111/nmo.14163. [50] Zhang Y, Lu T, Meng Y, et al. Auricular vagal nerve stimulation improves constipation by enhancing colon motility via the central-vagal efferent pathway in opioid-induced constipated rats [J]. Neuromodulation, 2021, 24(7): 1258-1268. DOI: 10.1111/ner.13406. [51] 张陆昕,易顺,曾植唯,等. 中医药调节Cajal间质细胞治疗慢性传输型便秘的研究进展[J]. 世界科学技术-中医药现代化,2022,24(6):2230-2235. DOI:10.11842/wst. 20210419014. [52] Xu SU, Zhai J, Xu KE, et al. M1 macrophages-derived exosomes miR-34c-5p regulates interstitial cells of Cajal through targeting SCF [J]. J Biosci, 2021, 46: 90. [53] Zhao Z, Xue Y, Zhang G, et al. Identification of evodiamine and rutecarpine as novel TMEM16A inhibitors and their inhibitory effects on peristalsis in isolated Guinea-pig ileum [J]. Eur J Pharmacol, 2021, 908: 174340. DOI: 10.1016/j.ejphar.2021.174340. [54] Zhou J, O'Connor MD, Ho V. The potential for gut organoid derived interstitial cells of Cajal in replacement therapy [J]. Int J Mol Sci, 2017, 18(10): 2059. DOI: 10.3390/ijms18102059. [55] Lorincz A, Redelman D, Horváth VJ, et al. Progenitors of interstitial cells of cajal in the postnatal murine stomach [J]. Gastroenterology, 2008, 134(4): 1083-1093. DOI: 10.1053/j.gastro.2008.01.036. [56] 张林,刘宝华,童卫东,等. 重组腺病毒Ad-绿色荧光蛋白/干细胞白血病基因的构建及在Cajal间质细胞缺失模型鼠体内的分布和表达[J]. 中华胃肠外科杂志,2007,10(2):119-123. DOI:10.3760/cma.j.issn.1671-0274. 2007.02.005. |
[1] | 余思燕 高玲 许鹏 黄瑜芳. 食管癌患者围手术期规范化营养治疗现状 [J]. 国际医药卫生导报, 2024, 30(9): 1434-1439. |
[2] | 徐田田. 肾轻链沉积病伴多浆膜腔积液1例 [J]. 国际医药卫生导报, 2024, 30(9): 1552-1555. |
[3] | 张思思 江淑贤 范晨萌 陈妙霞 李莉莉. 肝衰竭内科治疗护理质量敏感指标的构建 [J]. 国际医药卫生导报, 2024, 30(9): 1559-1564. |
[4] | 王磊 尤菲 张锋 吴冠吉 刘树文 马前锋. 老年心力衰竭患者应用心脏再同步化治疗后无应答的影响因素 [J]. 国际医药卫生导报, 2024, 30(8): 1248-1252. |
[5] | 刘志强 张翠 董文敬 刘振 孙经武. 心肌纤维化与AMPK-mTOR-ULK1信号通路研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1297-1300. |
[6] | 王霞 赛海芳. 代谢组学在感染性疾病中的研究进展 [J]. 国际医药卫生导报, 2024, 30(8): 1312-1316. |
[7] | 吴瑶 吕翔. 尘螨过敏哮喘儿童皮下特异性免疫治疗效果的影响因素分析 [J]. 国际医药卫生导报, 2024, 30(8): 1353-1357. |
[8] | 李孟奇 李朋 杜刚强 孙鸿朔 张锴. 长骨骨不连的发病率及手术治疗研究进展 [J]. 国际医药卫生导报, 2024, 30(7): 1062-1066. |
[9] | 崔筱 刘亮. 辣椒素受体在腹泻型肠易激综合征发病中的作用 [J]. 国际医药卫生导报, 2024, 30(7): 1066-1070. |
[10] | 任洁 邸曼 张莉 王晶晶 王娟. 保妇康栓联合5-ALA光动力治疗宫颈上皮内瘤变合并HR-HPV感染患者的效果 [J]. 国际医药卫生导报, 2024, 30(7): 1075-1078. |
[11] | 卢健 王亚军 宋杰. 一次性根管治疗与多次法根管治疗在牙体牙髓病患者中的疗效观察 [J]. 国际医药卫生导报, 2024, 30(7): 1111-1116. |
[12] | 王振文 朱亮 曾皓. 内镜治疗对消化道异物患者的安全性与可行性分析 [J]. 国际医药卫生导报, 2024, 30(7): 1156-1160. |
[13] | 李小妹 卢健 覃莉 凌燕兰. 卵巢过度刺激综合征患者的护理干预研究现状 [J]. 国际医药卫生导报, 2024, 30(7): 1199-1202. |
[14] | 陈荔蕊 苏照坤 高亚娜. 延伸护理在非小细胞肺癌患者阿替利珠单抗免疫治疗中的应用效果 [J]. 国际医药卫生导报, 2024, 30(6): 918-922. |
[15] | 徐兰 叶刚. 特瑞普利单抗治疗转移性恶性黑色素瘤1例 [J]. 国际医药卫生导报, 2024, 30(6): 1025-1027. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||