国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (7): 1135-1140.DOI: 10.3760/cma.j.cn441417-20240827-07018

• 文献分析 • 上一篇    下一篇

基于Web of Science核心合集机器学习算法应用于护理领域的文献计量学分析

胡美兰  胡婷婷   

  1. 广州市第一人民医院妇科,广州 510180

  • 收稿日期:2024-08-27 出版日期:2025-04-01 发布日期:2025-04-18
  • 通讯作者: 胡婷婷,Email:344631243@qq.com
  • 基金资助:

    广东省中医药局科研项目(20222156)

Bibliometric analysis of machine learning algorithms based on Web of Science core set applied to nursing field

Hu Meilan, Hu Tingting   

  1. Department of Gynecology, Guangzhou First People's Hospital, Guangzhou 510180, China

  • Received:2024-08-27 Online:2025-04-01 Published:2025-04-18
  • Contact: Hu Tingting, Email: 344631243@qq.com
  • Supported by:

    Scientific Research Project of Guangdong Provincial Bureau of Traditional Chinese Medicine (20222156)

摘要:

目的 分析机器学习算法应用于护理领域的研究现状及热点,为我国相关研究提供参考路径。方法 基于文献分析软件CiteSpace 6.2 R6,检索2010年1月至2024年5月在Web of Science核心合集中关于机器学习算法应用于护理领域的相关文献,从年发文量、作者、国家、期刊、文献共被引、关键词聚类等方面进行可视化分析。结果  共纳入842篇文献,年发文量总体呈上升趋势,其中《Nursing》上刊登最多(139篇),美国是发表文献最多的国家(295篇)、中心性最强的国家(centrality=0.62)。研究热点显示,排名前3位的突发关键词为机器学习、深度学习和预测模型,其中机器学习(strength=7.16)突发强度最高且一直持续至今。结论  机器学习算法应用于护理领域的研究热度持续增加,而我国在该领域的研究现状与国际前沿水平仍存在一定差距。未来可在把握国际热点基础上,深化护理与机器学习算法的合作。

关键词:

护理, 机器学习算法, 文献计量学, 可视化分析

Abstract:

Objective To analyze the research status and hotspots of machine learning algorithms applied to nursing field in foreign countries, so as to provide a reference path for related researches in China. Methods Based on the literature analysis software CiteSpace 6.2 R6, we searched the relevant literatures on the application of machine learning algorithms in nursing in the core set of Web of Science from January 2010 to May 2024, and carried out a visual analysis in terms of the number of articles per year, authors, countries, journals, total citations, and keyword clustering, etc. Results A total of 842 documents were included, with an overall increasing trend in annual publications, with the most publications in the journal Nursing (139), the United States being the country with the most publications (295), and the country with the strongest centrality (centrality=0.62). Research hotspots show that the top three sudden keywords are machine learning, deep learning, and predictive models, among them, machine learning (strength=7.16) has the highest burst intensity and has been sustained until now. Conclusions  The research hotness of machine learning algorithms applied to the nursing field has continued to increase in recent years, and there is still a certain gap between the current state of China's research in this field and the international cutting-edge level. In the future, on the basis of grasping the international hotspot, we should deepen the cooperation between nursing and machine learning algorithms.

Key words:

Nursing, Machine learning algorithms, Bibliometrics, Visual analysis