国际医药卫生导报 ›› 2024, Vol. 30 ›› Issue (10): 1598-1603.DOI: 10.3760/cma.j.issn.1007-1245.2024.10.004

• 文献分析 • 上一篇    下一篇

老年脆性骨折风险预测的研究热点和前沿分析

刘彩娟  曾清清  李卓兰  陆燕  曾谷清   

  1. 南华大学衡阳医学院护理学院 南华大学-湖南省提灯医疗科技有限公司智慧护理研究生联合培养基地,衡阳 421001

  • 收稿日期:2024-01-25 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 曾谷清,Email:zengguqing0123@163.com
  • 基金资助:

    湖南省财政厅项目([2022]44)

Research hotspots and frontier analysis of fragility fracture risk prediction in the elderly

Liu Caijuan, Zeng Qingqing, Li Zhuolan, Lu Yan, Zeng Guqing   

  1. School of Nursing, Hengyang Medical School, University of South China, University of South China-TD Care Hunan Province Graduate Joint Training Base, Hengyang 421001, China

  • Received:2024-01-25 Online:2024-05-15 Published:2024-05-31
  • Contact: Zeng Guqing, Email: zengguqing0123@163.com
  • Supported by:

    Project of Hunan Provincial Department of Finance ([2022]44)

摘要:

目的 分析国内外老年脆性骨折风险预测相关研究热点和发展趋势,为进一步开展老年脆性骨折风险预测研究提供参考。方法 采用文献计量学研究方法,检索2013—2022年中国知网、维普、万方、中国生物医学数据库、Web of Science、PubMed和Medline数据库中收录的老年脆性骨折风险预测相关的中/英文文献,运用CiteSpace 6.2.R5进行可视化分析。结果 共检索获得文献4 809篇,国内发文量呈逐渐增长趋势,国外发文量呈总体增长趋势。国内发文最多的期刊是《中国骨质疏松杂志》,老年脆性骨折风险预测研究英文文献中发文量最多的期刊是《Osteoporosis International》。研究热点主要集中在骨质疏松的发生、骨密度的测定和骨折风险的评估,近几年的研究前沿主要集中在机器学习方法的推进。结论 老年脆性骨折的风险因素的预测研究为医护开展一级预防提供了科学依据;开展老年脆性骨折影响因素预测研究,为临床诊断和护理工作提供参考;机器学习是老年脆性骨折风险预测研究未来的重要方向。

关键词:

脆性骨折,  ,  , 风险预测,  ,  , 老年,  ,  , CiteSpace软件,  ,  , 文献计量学,  ,  , 可视化分析

Abstract:

Objective The hot spots and development trends of fragility fracture risk prediction in the elderly at home and abroad were analyzed to provide references for further research on fragility fracture risk prediction in the elderly. Methods The bibliometric method was used to search the Chinese and English literatures on the topic of fragility fracture risk prediction in the elderly included in CNKI, VIP, Wanfang, CBM, Web of Science, PubMed, and Medline databases from 2013 to 2022. CiteSpace 6.2.R5 was used for visual analysis. Results A total of 4 809 articles were retrieved. The number of domestic publications showed a gradual growth trend, and the number of foreign publications showed an overall growth trend. The most published journal in China was Chinese Journal of Osteoporosis, and the most published journal in English on the risk prediction of fragility fracture in the elderly was Osteoporosis International. The research hotspots were mainly focused on the occurrence of osteoporosis, measurement of bone mineral density, and assessment of fracture risk. Research frontiers in recent years were mainly focused on the advancement of machine learning methods. Conclusions Research on the prediction of risk factors for fragility fracture in the elderly provides an important scientific basis for medical staff to carry out primary prevention. It provides an important reference for clinical diagnosis and nursing work to carry out the prediction study of the influencing factors of fragility fracture in the elderly. Machine learning is an important direction for future research on fragility fracture risk prediction in the elderly.

Key words:

Fragility fracture,  , Risk prediction,  , Elderly,  , CiteSpace software,  , Bibliometrics,  , Visual analysis