[1] Levoux J, Prola A, Lafuste P, et al. Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming[J]. Cell Metab, 2021,33(2):283-299.e9. DOI: 10.1016/j.cmet.2020.12.006.
[2] Takagi T, Okayama T, Asai J, et al. Topical application of sustained released-carbon monoxide promotes cutaneous wound healing in diabetic mice[J]. Biochem Pharmacol, 2022,199:115016. DOI: 10.1016/j.bcp.2022.115016.
[3] Ju C, Liu D. Exosomal microRNAs from Mesenchymal stem cells: novel therapeutic effect in wound healing[J]. Tissue Eng Regen Med, 2023,20(5):647-660. DOI: 10.1007/s13770-023-00542-z.
[4] Wang Y, Ma D, Wu Z, et al. Clinical application of mesenchymal stem cells in rheumatic diseases[J]. Stem Cell Res Ther, 2021,12(1):567. DOI: 10.1186/s13287- 021-02635-9.
[5] 刘丽桦,刘德伍. 脂肪间充质干细胞外泌体源非编码RNA在创面愈合中的作用[J]. 中国临床药理学与治疗学,2024,29(9):1049-1056. DOI:10.12092/j.issn.1009-2501. 2024.09.011.
[6] 武禄,刘标,黎彦,等. 年轻化间充质干细胞条件培养基促进小鼠创面愈合的研究[J]. 解放军医学院学报,2024,45(5):535-543. DOI:10.12435/j.issn.2095-5227.2024.047.
[7] Yang H, Li C, Li Y, et al. Adipose-derived stem cells and obesity: the spear and shield relationship[J]. Genes Dis, 2021,10(1):175-186. DOI: 10.1016/j.gendis.2021.09.004.
[8] Toh WS, Lai RC, Hui JHP, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment[J]. Semin Cell Dev Biol, 2017,67:56-64. DOI: 10.1016/j.semcdb.2016.11.008.
[9] Zhuang SJ, Sun XY, Luo M, et al. Hypoxic mesenchymal stem cells promote diabetic wound healing in rats by increasing VEGF secretion[J]. Biomed Environ Sci, 2023,36(8):756-759. DOI: 10.3967/bes2023.100.
[10] Qiao Z, Wang X, Zhao H, et al. The effectiveness of cell-derived exosome therapy for diabetic wound: a systematic review and meta-analysis[J]. Ageing Res Rev, 2023,85:101858. DOI: 10.1016/j.arr.2023.101858.
[11] He L, Zhu C, Jia J, et al. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway[J]. Biosci Rep, 2020,40(5):BSR20192549. DOI: 10.1042/BSR20192549.
[12] Heo JS, Kim S, Yang CE, et al. Human adipose mesenchymal stem cell-derived exosomes: a key player in wound healing[J]. Tissue Eng Regen Med, 2021,18(4):537-548. DOI: 10.1007/s13770-020-00316-x.
[13] Zhou K, Guo S, Tong S, et al. Immunosuppression of human adipose-derived stem cells on T cell subsets via the reduction of NF-kappaB activation mediated by PD-L1/PD-1 and Gal-9/TIM-3 pathways[J]. Stem Cells Dev, 2018,27(17):1191-1202. DOI: 10.1089/scd.2018.0033.
[14] Zhao W, Zhang H, Liu R, et al. Advances in immunomodulatory mechanisms of mesenchymal stem cells-derived exosome on immune cells in scar formation[J]. Int J Nanomedicine, 2023,18:3643-3662. DOI: 10.2147/IJN.S412717.
[15] Mazini L, Rochette L, Admou B, et al. Hopes and limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in wound healing[J]. Int J Mol Sci, 2020,21(4):1306. DOI: 10.3390/ijms21041306.
[16] An Y, Lin S, Tan X, et al. Exosomes from adipose-derived stem cells and application to skin wound healing[J]. Cell Prolif, 2021,54(3):e12993. DOI: 10.1111/cpr.12993.
[17] Xiao S, Xiao C, Miao Y, et al. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing[J]. Stem Cell Res Ther, 2021,12(1):255. DOI: 10.1186/s13287-021-02333-6.
[18] Choi EW, Seo MK, Woo EY, et al. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts[J]. Exp Dermatol, 2018,27(10):1170-1172. DOI: 10.1111/exd.13451.
[19] Shen K, Wang XJ, Liu KT, et al. Effects of exosomes from human adipose-derived mesenchymal stem cells on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice[J]. Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi, 2022,38(3):215-226. DOI: 10.3760/cma.j.cn501120-20201116-00477.
[20] Tang J, Fu C, Li Y, et al. Long noncoding RNA OIP5-AS1 promotes the disease progression in nasopharyngeal carcinoma by targeting miR-203[J]. Biomed Res Int, 2021,2021:9850928. DOI: 10.1155/2021/9850928.
[21] Xie R, Liu L, Lu X, et al. LncRNA OIP5-AS1 facilitates gastric cancer cell growth by targeting the miR-422a/ANO1 axis[J]. Acta Biochim Biophys Sin (Shanghai), 2020,52(4):430-438. DOI: 10.1093/abbs/gmaa012.
[22] Jiang W, Ou ZL, Zhu Q, et al. LncRNA OIP5-AS1 aggravates the stemness of hepatoblastoma through recruiting PTBP1 to increase the stability of β-catenin[J]. Pathol Res Pract, 2022,232:153829. DOI: 10.1016/j.prp.2022. 153829.
[23] Solovyeva VV, Chulpanova DS, Tazetdinova LG, et al. In vitro angiogenic properties of plasmid DNA encoding SDF-1α and VEGF165 genes[J]. Appl Biochem Biotechnol, 2020,190(3):773-788. DOI: 10.1007/s12010-019- 03128-5.
[24] 付文,王向臣,王延桂,等. 脂肪源性间充质干细胞外泌体在大鼠全层皮肤缺损创面愈合中的机制研究[J]. 组织工程与重建外科杂志,2023,19(4):342-351,379. DOI:10.3969/j.issn.1673-0364.2023.04.003.
[25] Salafutdinov II, Gazizov IM, Gatina DK, et al. Influence of recombinant codon-optimized plasmid DNA encoding VEGF and FGF2 on co-induction of angiogenesis[J]. Cells, 2021,10(2):432. DOI: 10.3390/cells10020432.
[26] Eggers C, Müller J, Schultze-Mosgau S. VEGF transfer based on gene-modified fibroblasts using a hypoxia-induced vector to modulate neoangiogenesis in ischaemic regions of myocutaneous transplants[J]. Int J Oral Maxillofac Surg, 2015,44(2):267-276. DOI: 10.1016/j.ijom.2014.06.018.
|