[1] 王含必,邓成艳. 外泌体的生物功能及临床治疗应用潜能[J]. 生殖医学杂志,2021,30(7):966-970. DOI:10.3969/j.issn.1004-3845.2021.07.024.
[2] He C, Zheng S, Luo Y, et al. Exosome theranostics: biology and translational medicine[J]. Theranostics, 2018, 8(1): 237-255. DOI:10.7150/thno.21945. eCollection 2018.
[3] Nguyen BY, Azam T, Wang X. Cellular signaling cross-talk between different cardiac cell populations: an insight into the role of exosomes in the heart diseases and therapy[J]. Am J Physiol Heart Circ Physiol, 2021, 320(4): H1213-H1234. DOI:10.1152/ajpheart.00718.2020.
[4] Yang J, Yu X, Xue F, et al. Exosomes derived from cardiomyocytes promote cardiac fibrosis via myocyte-fibroblast cross-talk[J]. Am J Transl Res, 2018, 10(12): 4350-4366.
[5] Jadli AS, Parasor A, Gomes KP, et al. Exosomes in cardiovascular diseases: pathological potential of nano-messenger[J]. Front Cardiovasc Med, 2021, 8: 767488. DOI:10.3389/fcvm.2021.767488
[6] 曹跃, 李丽丽. 外泌体miRNA在心血管疾病诊断及治疗中的研究进展[J]. 中国分子心脏病学杂志, 2021, 21(6): 4361-4364. DOI: 10.16563/j.cnki.1671-6272. 2021. 12.017.
[7] Deddens JC, Vrijsen KR, Colijn JM, et al. Circulating extracellular vesicles contain miRNAs and are released as early biomarkers for cardiac injury[J]. J Cardiovasc Transl Res, 2016, 9(4): 291-301. DOI:10.1007/s12265-016- 9705-1.
[8] Corsten MF, Dennert R, Jochems S, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease[J]. Circ Cardiovasc Genet, 2010, 3(6): 499-506. DOI:10.1161/CIRCGENETICS. 110.957415.
[9] Liu X,Yuan L,Chen F, et al. Circulating miR-208b:a potentially sensitive and reliable biomarker for the diagnosis and prognosis of acute myocardial infarction[J]. Clin Lab, 2017, 63(1): 101-109. DOI: 10.7754/Clin.Lab.2016.160632.
[10] 张亮, 廖勇群, 夏秦川, 等. 铁死亡调控信号通路以及在相关疾病中的研究进展[J]. 中国临床药理学与治疗学, 2022, 27(2): 227-234. DOI: 10.12092/j.issn.1009-2501. 2022. 02.015.
[11] 荣幸, 夏琍群. 铁死亡在心血管疾病中的研究进展[J]. 国际心血管病杂志, 2022, 49(2): 86-88, 95. DOI:10.3969/j.issn.1673-6583.2022.02.007.
[12] 段誉, 邰文琳. 铁死亡的发生机制及其在纤维化疾病中作用的研究进展[J]. 实用临床医药杂志, 2022, 26(10): 139-143.
[13] Gyöngyösi M, Winkler J, Ramos I, et al. Myocardial fibrosis: biomedical research from bench to bedside[J]. Eur J Heart Fail, 2017, 19(2): 177-191. DOI: 10.1002/ejhf.696.
[14] 余细勇. 心肌损伤修复过程中的细胞交互作用机制研究[J]. 中国药理学与毒理学杂志, 2016, 30(10): 1003.
[15] Luo H, Li X, Li T, et al. microRNA-423-3p exosomes derived from cardiac fibroblasts mediates the cardioprotective effects of ischaemic post-conditioning[J]. Cardiovasc Res, 2019, 115(7): 1189-1204. DOI: 10.1093/cvr/cvy231.
[16] Lyu L, Wang H, Li B, et al. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes[J]. J Mol Cell Cardiol, 2015, 89(Pt B): 268-279. DOI:10.1016/j.yjmcc.2015.10.022.
[17] Wang F, Yuan Y, Yang P, et al. Extracellular vesicles-mediated transfer of miR-208a/b exaggerate hypoxia/reoxygenation injury in cardiomyocytes by reducing QKI expression[J]. Mol Cell Biochem, 2017, 431(1-2): 187-195. DOI: 10.1007/s11010-017-2990-4.
[18] Yang Y, Tai W, Lu N, et al. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis[J]. Aging (Albany NY), 2020, 12(10): 9085-9102. DOI:10.18632/aging.103176.
[19] Zhuang Y, Yang D, Shi S, et al. MiR-375-3p promotes cardiac fibrosis by regulating the ferroptosis mediated by GPX4[J]. Comput Intell Neurosci, 2022, 2022: 9629158. DOI:10.1155/2022/9629158.
[20] Wang J, Deng B, Liu Q, et al. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload[J]. Cell Death Dis, 2020, 11(7): 574. DOI: 10.1038/s41419-020-02777-3.
|